
Tampereen teknillinen yliopisto. Julkaisu 1116
Tampere University of Technology. Publication 1116

Arto Salminen

Mashup Ecosystems: Integrating Web Resources on
Desktop and Mobile Devices

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Tietotalo Building, Auditorium TB223,
at Tampere University of Technology, on the 1st of March 2013, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2013

ISBN 978-952-15-3022-7
ISSN 1459-2045

Abstract

The Web is increasingly used as an application platform, and recent de-

velopment of it has introduced software ecosystems where different actors

collaborate. This collaboration is international from day one, and it evolves

and grows rapidly. In web ecosystems applications are provided as services,

and interdependencies between ecosystem parts can vary from very strong

and obvious to loose and recondite. Mashups – web application hybrids

that combine resources from different services into an integrated system

that has increased value from user perspective – are exploiting services of

the Web and creating ecosystems where end-users, mashup authors, and

service providers collaborate. The term “resources” is used here in a broad

sense, and it can refer to user’s local data, infinite content of the Web, and

even executable code. This dissertation presents mashups as a new breed

of web applications that are intended for parsing the web content into an

easily accessed form on both regular desktop computers as well as on mobile

devices.

Constantly evolving web technologies and new web services open up un-

foreseen possibilities for mashup development. However, developing mash-

ups with current methods and tools for existing deployment environments

is challenging. First, the Web as an application platform faces numerous

shortcomings, second, web application development practices in general are

still immature, and third, development of mashups has additional require-

ments that need to be addressed. In addition, mobility sets even more

challenges for mashup authoring.

This dissertation describes and addresses numerous issues regarding mashup

ecosystems and client-side mashup development. To achieve this, we have

implemented technical research artifacts including mashup ecosystems and

iii

different kinds of mashup compositions. The artifacts are developed with

numerous runtime environments and tools and targeted at different end-user

platforms. This has allowed us to evaluate methods, tools, and practises

used during the implementation.

As result, this dissertation identifies the fundamental challenges of mashup

ecosystems and describes how service providers and mashup ecosystem au-

thors can address these challenges in practice. In addition, example imple-

mentation of a specialized multimedia mashup ecosystem for mobile devices

is described. To address mashup development issues, this dissertation intro-

duces practical guidelines and a reference architecture that can be applied

when mashups are created with traditional web development tools. More-

over, environments that can be used on mobile devices to create mashups

that have access to both web and local resources are introduced. Finally,

a novel approach to web software development – creating software as a

mashup – is introduced, and a realization of such concept is described.

iv

Preface

This thesis would not have been possible to finish without support of nu-

merous colleagues, friends, and family members.

First of all I thank my supervisor, Professor Tommi Mikkonen, for sup-

port, advice, and ideas. Naturally, I thank the pre-examiners of this thesis,

Professor Pasi Tyrväinen from University of Jyväskylä, Finland, and Asso-

ciate Professor Muhammad Ali Babar from IT University of Copenhagen,

Denmark, for reviewing the manuscript, and Professor Mehdi Jazayeri from

University of Lugano, Switzerland, for being my opponent at the public

examination. In addition, I thank co-authors Mikko Hartikainen, Jarno

Kallio, Feetu Nyrhinen, and Antero Taivalsaari for their contributions.

Furthermore, I would like to gratefully acknowledge the organizations that

supported my thesis. I have been enjoying a priviledge to work at the

Department of Software Systems, nowadays known as the Department of

Pervasive Computing at Tampere University of Technology. The projects

where the work was carried out were funded by the Finnish Funding Agency

for Technology and Innovation (Tekes), the Strategic Centre for Science,

Technology and Innovation in the Field of ICT (TiViT), and the Academy

of Finland. In addition, the work has been funded by Graduate School on

Software and Systems Engineering (SoSE) and the Nokia Foundation.

Finally, I would like to express my gratitude to my wife, Pia, for her love

and patience throughout the project and while travelling.

Arto Salminen
Tampere, February 18, 2013

v

vi

Contents

List of Included Publications ix

1 Introduction 1

1.1 Motivation . 4

1.2 Deriving Research Questions . 6

1.3 Research Methods . 8

1.4 Main Contributions . 10

1.5 Organization of the Dissertation . 12

2 Background and Related Work 15

2.1 Hyperlinking, Portals, and Composite Applications 15

2.2 Service-Oriented Architectures . 17

2.3 Different Types of Mashups . 20

2.4 Web Interfaces . 26

2.5 Mashup Development . 36

2.5.1 Manual Mashup Development . 37

2.5.2 Mashup Development with Tools 38

2.5.3 Mashup Systems for Cross-Domain Communications 41

2.5.4 Mashup Patterns . 42

2.6 Mashup Runtimes . 44

3 Mashup Ecosystems 47

3.1 Background and Related Work . 48

3.2 Three Perspectives on Mashup Ecosystems 49

3.3 Explicit and Implicit Mashup Ecosystems 53

3.4 Implementing Mashup Ecosystems . 55

3.5 Example Implementation . 57

vii

CONTENTS

4 Composing Mashups 61

4.1 Background and Related Work . 62

4.2 Designing Mashup Architecture . 64

4.2.1 Mashup Architecture Requirements 65

4.2.2 Reference Architecture for Mashups 66

4.3 General Design Principles . 68

4.4 Accessing Web Services . 70

4.5 Accessing Local Services . 72

4.6 Considerations of Mashups on Mobile Devices 73

4.7 Security . 76

4.7.1 Attack Scenarios . 76

4.7.2 Security Practices . 77

4.7.3 Accessing Interfaces with Separate Origins 78

5 Towards Software as a Mashup 81

5.1 Background and Related Work . 82

5.2 Component-based Software in Web 3.0 83

5.3 Implementing Software as a Mashup . 84

5.4 Proof-of-Concept Implementation . 86

6 Conclusions 91

6.1 Summary . 91

6.2 Research Questions Revisited . 93

6.3 Research Contributions Revisited . 94

6.4 Introduction to the Included Publications 96

6.5 Author’s Contributions in Publications 98

6.6 Future Work . 100

Glossary 103

References 107

viii

List of Included Publications

I A. Salminen and T. Mikkonen, “Mashups – Software ecosystems for the web

era”. In Proceedings of ICSOB’2012 4th International Workshop on Software

Ecosystems (IWSECO’2012, Boston, MA, USA, June 18–20, 2012). Sun SITE

Central Europe CEUR, Aachen, Germany.

II A. Salminen, J. Kallio and T. Mikkonen, “Towards mobile multimedia mashup

ecosystem”. In Proceedings of IEEE ICC 2011 Workshop on Advances in Mobile

Networking – “Towards a Next Generation Mobile Core Network” (ICC’2011,

Kyoto, Japan, June 5–9, 2011). IEEE Computer Society, Los Alamitos, CA,

USA.

III M. Hartikainen, A. Salminen and J. Kallio, “Towards mobile multimedia mashup

architecture”. In Proceedings of 38th Euromicro Conference on Software Engi-

neering and Advanced Applications (SEAA’2012, Cesme, Izmir, Turkey, Septem-

ber 5–8, 2012). IEEE Computer Society, Los Alamitos, CA, USA.

IV F. Nyrhinen, A. Salminen, T. Mikkonen and A. Taivalsaari, “Lively mashups for

mobile devices”. In Proceedings of the First International Conference on Mobile

Computing, Applications and Services (MobiCase’2009, San Diego, CA, October

26–29, 2009). Springer-Verlag, Berlin, Heidelberg.

V A. Salminen and T. Mikkonen, “Towards pervasive mashups in embedded devices:

Comparing procedural and declarative approach”. To appear in Special Issue on

Techniques and Applications for Merging Mobile and Cloud Services, Interna-

tional Journal of Communication Networks and Distributed Systems (IJCNDS),

Vol. 10, No. 3, 2013, Inderscience Publishers.

ix

VI A. Salminen, F. Nyrhinen, T. Mikkonen and A. Taivalsaari, “Developing client-

side mashups: Experiences, guidelines and reference architecture”. Artur Lug-

mayr, Olli Sotamaa, Heljä Franssila, and Hannu Kärkkäinen (eds.), To appear

in Special issue on Ambient and Social Media Business and Application, Inter-

national Journal of Ambient Computing and Intelligence (IJACI), Vol. 5, No. 1,

January-March 2013, IGI Publishing.

VII A. Salminen, “Mashups in Web 3.0”. In Proceedings of 8th International Confer-

ence on Web Information Systems and Technologies (WebIST’2012, Porto, Por-

tugal, April 18–21, 2012). Science and Technology Publications (SciTePress).

VIII T. Mikkonen and A. Salminen, “Implementing mobile mashware architecture:

Downloadable components as on-demand services”. In Proceedings of The 9th

International Conference on Mobile Web Information Systems (MobiWIS’2012,

Niagara Falls, Ontario, Canada, August 27–29, 2012). Procedia Computer Sci-

ence.

The permissions of the copyright holders of the original publications to reprint them in

this thesis are hereby acknowledged.

x

1

Introduction

Let’s first consider an example mashup: Google Maps, a map service that was published

in February 2005 by Google. At the time of publishing, the application mashed up only

Google’s own services: searching and mapping [1]. For instance, one could look for

“hotels near LAX” and see the result plotted as pushpins on the map. The application

was found to be very useful, and it was later enhanced with new capabilities including

an ability to add third party content such as encyclopedia articles and web camera

images into the mashup. However, the Web (World Wide Web) has come a long way

to enable access to this kind of rich applications through a web browser. Consequently,

the topic of this dissertation, mashups, is about stretching the limits of the underlying

technology to enable useful and even fascinating applications for the end-user.

Within 20 years the Web has transformed from a simple document presenting system

into a rich application platform. When conceived, the original purpose of the Web was

presenting documents called hypertext1 containing static elements that were connected

to each other with links. Hypertext documents written in domain-specific markup

language called HTML [3] were later enhanced with support for images and form-

based data entry. At the late 1990s web browser capabilities were expanded with

dynamic HTML (DHTML) technologies that made possible to add interactive and

animated elements into static documents. The so-called DHTML includes support for

client-side scripting language, separate presentation definition language, and a scripting

interface for web browsers. Currently, the de facto client-side programming language

1The prefix hyper means “over” or “beyond”, and it signifies the overcoming of the old linear
constraints of written text. The term “hypertext” is often used where the term “hypermedia” might
seem appropriate. Both terms are coined by Ted Nelson [2].

1

1. INTRODUCTION

is JavaScript [4], which is formalized in the ECMAScript language standard [5], and

the presentation definition language is Cascading Style Sheets (CSS) [6]. The scripting

interface in browsers is referred to as Document Object Model (DOM) [7]. Later, plug-

ins, such as Adobe Flash [8] and Java Applets [9], were introduced and targeted at

embedding interactive elements as well as advanced scripting and graphics into web

pages.

As browser capabilities have been evolving, more complex web applications have

been implemented. In the mid 1990s the most popular browser-based web applications

were e-mail applications such as HoTMaiL (known today as Windows Live Hotmail,

http://mail.live.com) and RocketMail (known today as Yahoo! Mail, http://mail.

yahoo.com). However, before Ajax (Asynchronous JavaScript And XML) [10], a way to

download and display data in a piecemeal fashion, was introduced, the whole view was

reloaded when there was need to communicate with the server back-end and to update

the user interface correspondingly. This was inefficient and caused the user experience of

web applications to be poor compared to their desktop counterparts. Ajax, along with

numerous other developments such as faster JavaScript and browser rendering engines,

turned the Web into a pervasive software platform that is accessible everywhere, at

anytime, for everyone. The latest additions that are introduced in HTML5 standard

[11] include offline functionality and access to device peripherals, facilities that have

been typical for operating systems. Therefore, it has been argued that web browsers are

taking the role of operating system as platform and resource allocator for applications

[12, 13]. All this has dramatically changed the way people develop, deploy, and use

software. However, document-oriented origins of the web are still evident in many

areas, and traditionally web application composing has been difficult without plug-in

components or browser extensions.

The paradigm shift towards the Web is obvious in numerous things that people

use daily. For instance newspapers and books as well as music and movie industries

are currently experiencing a transition to the Web. Similarly, the software industry is

currently in the middle of a paradigm shift from static binary applications into dynamic

web-based applications that are executed inside a web browser or with a special runtime

environment. The new capabilities of web browsers and certain advantages of web-based

software have catalyzed this transition. Consequently, we now have full-fledged browser-

based alternatives for e-mail clients, calendars, spreadsheet editors, word processors,

2

http://mail.live.com
http://mail.yahoo.com
http://mail.yahoo.com

slide presentation applications, map applications, travel reservation systems, image and

sound manipulation applications as well as 2D and 3D games, among others.

Applications live in the Web as services. The delivery model of the Web, on-demand

software or Software-as-a-Service (SaaS), implies that installations or manual upgrades

are no longer required for end-user. These services, or web applications, can be used

to gain access to and perform operations with content stored in remote systems. This

model of operation is often referred to as “cloud computing”. In this sense, the Web

is now the first global, uniform distribution channel that can be accessed in pervasive

way with different terminals such as desktop computers, mobile phones, as well as other

embedded devices. This capability of instant worldwide deployment makes the Web

superior to conventional binary application platforms [12].

Data, content artifacts, and other resources released to the Web are available all over

the world instantly after publication, similarly to web applications. Web applications

can support user collaboration, and allow users to interact and share the same resources

over the Web, sometimes even simultaneously. In addition, numerous web services

allowing users to upload, download, store, and modify private and public resources

have emerged. These resources can include personal data such as images, texts, videos,

and e-mails, as well as public data such as stock quotes, weather data, and news

feeds. As the amount of web services and devices used to consume data has exploded,

it is difficult to handle and gain access to the relevant data. To be able to handle

the situation, searching has become one of the most important services of the Web.

However, searching, if the implementation is simple, can be used only for data accessing,

not for analyzing it. Similarly to resources, communication has decentralized into

different services including e-mail, different social media services, instant messaging

services, chats, and blogs. Therefore, there is a need to develop new mechanisms to

utilize resource handling and communication services of the Web. Moreover, the Web

provides an opportunity for collaboration not only for end-users sharing their personal

data, but for developers sharing their code as well.

Recent development of the Web has introduced software ecosystems [14] where dif-

ferent actors, such as platform providers, application developers, standardization orga-

nizations, users, and manufacturers of web-enabled devices, among others, collaborate.

As the Web is utilized as a platform, the collaboration is international from day one,

and it evolves and grows in rapid pace. In web ecosystems, interdependencies between

3

1. INTRODUCTION

ecosystem parts can vary from very strong and obvious to loose and recondite. Ecosys-

tems have become important means of collaboration and competition, too. Often users

that have become firmly binded to one ecosystem will not likely commit to another.

Furthermore, ecosystems can be organized, controlled, and systematically evolved as

well as unorganized, unmanaged, and evolving in aimless manner. The nature of an

ecosystem has a profound effect on what kind of business models can emerge within it.

A mashup can be defined as an application that combines resources – data, code,

and content artifacts – from different services over the Web into an integrated expe-

rience that has increased value for end-users. Mashups can combine the content in a

new, unforeseen way, thus creating entirely new web service, or they can provide new

visualizations for existing services. For instance, a mashup can combine map with im-

ages that can be attached on specific locations. Another type of mashup can visualize

the images in a novel fashion, for example on a timeline or as a collage.

This dissertation presents the current state of web service-based mashup ecosystem

development. Numerous problems that developers encounter when developing such

applications are described. Consequently, solutions and best practises are presented,

along with a general reference architecture for mashups. Finally, findings of the research

are applied in the concept of mashware, software developed as a mashup, and as a result

the first mashware application framework is realized.

1.1 Motivation

This dissertation focuses on new ways to build applications with web service-based ap-

proach. An important realization is that applications built on top of the Web do not

have to live by the same constraints that have characterized the evolution of conven-

tional desktop software. The ability to dynamically combine content from numerous

web sites and local resources, and the ability to instantly publish services worldwide has

opened up entirely new possibilities for software development. In general, such systems

are referred to as mashups, which are content aggregates that leverage the power of

the Web to support instant, worldwide sharing of content. We argue that this model

of building applications will be very successful, and that it will evolve into something

more compelling: software created as a mashup.

4

1.1 Motivation

As mashups access different services and enable users as well as enterprises to col-

laborate, it can be argued that mashup ecosystems can be formed. Described on a

high level, mashup users, mashup authors, and service providers collaborate in mashup

ecosystems. Mashup users can add content to services and consume the content in

extended form through mashups. Mashup ecosystems are not necessarily controlled

explicitly by a central authority. In contrast, even though mashup authors and ser-

vice providers may have explicit service-level agreements (SLAs) and terms of services

(TOS), it is common that mashups are developed without such contracts, and conse-

quently, ecosystems are formed implicitly. This makes it possible for mashup ecosystems

to evolve constantly and adapt to user requirements. Despite the increasing popularity

of mashup composing, there are stumbling stones such as interface reliability, lack of

tool support, and legal matters that hinder the development of mashup ecosystems.

Mashups have potential for great user experiences, as they include more functions

than just adding content artifacts to a single view. Mashups can be used to filter,

combine, and modify data retrieved from multiple sources over the Web. Combining

web resources into mashups is an efficient way to create new services or extract relevant

information from complex mixture of source data. Even unexpected innovations are

possible as mashups can combine resources in unforeseen way. Furthermore, mashups

are even more usable when non-technical users create them with special purpose tools

and have their own views for the data. Some mashups may implement mechanisms that

allow non-technical users to alter the mashup functionality. This is a very inspiring part

of mashups as it allows creative users to design their own applications that are capable

to do unexpected things. Allowing “do-it-yourself” mashups serve the long tail of users

having diverse needs that are not fulfilled by existing applications or services. Often

this kind of possibility is enabled with a specialized tool that can be used for mashup

composing out of prefabricated components.

Well-build mashups have functionality for filtering source data. By having ad-

justable filters a mashup can provide relevant results for the user’s needs. Filters can

be based on much more relevant variables than manually entered limits such as the

highest and the lowest price of a product. Such filters can be time of the day, location

of the user, his past activity, activity of other users (trends), profile setting of users

mobile device, etc. In embedded devices, mobile devices being at the forefront, mash-

ups can benefit from accessing the user’s context thus being able to combine resources

5

1. INTRODUCTION

even automatically. Heavy processing, e.g. filtering images with a face detection algo-

rithm, can be executed on the server, using MashReduce programming model [15], for

instance.

Different kinds of dependability mechanisms play an important role in a mashup.

At least the mashup should be implemented so that it checks whether the input data is

correct. More sophisticated mashups can have fall-back mechanisms that, instead just

giving up on error, try to use next best strategy to ensure even partial functionality.

Furthermore, mashups can have controlling mechanisms that supervise the functionality

and replace the failing parts with other ones. In addition, mashups can have capabilities

to extract the result mashup to some external viewing device and change the user

interface of the mashup accordingly. For instance, this allows a mashup to be created

in a mobile device and the result to be shown on a bigger screen.

Typically mashups are built with combination of server- and client-side parts. Func-

tionality between these two parts is divided according to what is suitable for the current

design. In the early days, dynamic web sites were created on server-side with combi-

nation of C programs, Perl, and shell scripts using Common Gateway Interface (CGI).

Today, server-side web applications are often developed with Java, server-side Java-

Script, Perl, PHP, Python, or other suitable language. This kind of applications work

especially well if the client device has low processing resources as heavy processing

can take place at the server-end and the client just renders the result. As client-side

terminals have gained more competence, it has become possible to compose mashups

where the business logic resides completely on the client-side. While this dissertation

touches on server-end technologies, the main focus is on the client-side implementation

of mashups.

1.2 Deriving Research Questions

Since mashups by definition combine data from multiple sources, the stakeholders that

provide and consume this data form an ecosystem. The mashup ecosystem can be

considered to include all possible web services and mashups build on top of them all

over the world. However, subsystems of this global ecosystem can be considered as well.

These smaller mashup ecosystems can be explicit or implicit, depending on how they

are formed. One can define an ecosystem explicitly by allowing a fixed set of services

6

1.2 Deriving Research Questions

to be used in mashups. On the other hand, mashup ecosystems need not be controlled

by a central authority, and implicit ecosystems emerge when arbitrary services are used

in mashups.

When a mashup ecosystem is formed, numerous implementation issues as well as

legal aspects need to be taken into account. In practice, these issues are highly related

to the set of services provided, mashups implemented, and requirements set by the

ecosystem users and other stakeholders. For instance, a closed ecosystem with mashups

developed for desktop systems has a different set of requirements than an ecosystem

targeted at mobile devices with a changing set of source services. Consequently, the

first research question that this dissertation addresses is:

RQ1. How to design mashup ecosystems where end-users, mashup authors, and

service providers collaborate?

Mashup development is not a craft free of complications. First, the Web as an ap-

plication platform faces numerous shortcomings. Second, engineering and architecting

support for web application development is still immature. Third, mashups that are

build on the services of the Web have special requirements that need to be addressed.

Furthermore, in addition to desktop systems, mashups can be implemented for mobile

domain, as well. While mobility introduces additional challenges for mashup develop-

ment, the dynamic nature of mashups suits well for different ways mobile terminals can

be used. Mixing web resources with the capabilities of mobile devices allows to build

mashups that take the user’s context into account and automatically provide relevant

information. This derives the second research question:

RQ2. How to solve problems related to client-side mashup development on desk-

top and mobile devices?

Mashups are successful utilizing the Web as a platform for accessing services provid-

ing content through different types of web interfaces. However, in addition to content

artifacts, executable application components can be used in mashups to create software

in piecemeal fashion. This kind of software created as a mashup is originally presented

in [16, 17] and referred to as mashware. Despite significant benefits that such system

would have, mashware has not been realized even as a laboratory prototype. Therefore,

the third research question of the dissertation is:

7

1. INTRODUCTION

RQ3. How to realize software as a mashup?

The research questions are addressed in the included publication as follows. RQ1

is addressed in Publications I, II, and III; RQ2 is addressed in Publications IV, V, and

VI; and RQ3 is addressed in Publications VII and VIII.

1.3 Research Methods

Taxonomy of research approaches for information systems development has been pro-

posed by Järvinen [18]. The taxonomy divides research approaches into Mathematical

approaches and Approaches studying reality, where the former concerns symbol systems

without direct reference to objects in reality, such as formal languages or algebraic

units. The information systems research concerns the latter, which is divided further

to two subcategories Researches stressing what is reality and Researches stressing util-

ity of artifacts. The former has another subcategory Approaches for empirical studies.

Consequently, five research approaches in addition to Mathematical approaches can be

organized into these categories as follows (research approaches are emphasized with a

boldface font).

• Mathematical approaches

• Approaches studying reality

– Researches stressing what is reality

∗ Conceptual-analytical approaches

∗ Approaches for empirical studies

· Theory-testing approaches

· Theory-creating approaches

– Researches stressing utility of artifacts

∗ Artifacts-building approaches

∗ Artifacts-evaluating approaches

In this dissertation we have built software artifacts and evaluated the artifacts to

determine if requirements set for the artifacts are fulfilled. Therefore, we have followed

methods categorized as Researches stressing utility of artifacts. In the artifact building

and evaluation we have carried out action design research (ADR) [19], which includes

the following phases: 1) problem formulation, 2) building, intervention, and evaluation,

8

1.3 Research Methods

3) reflection and learning, and 4) formalization of learning [19]. Consequently, our

problem formulation has been practise-inspired, and the building of the artifacts has

been carried out at the same process as the evaluation, and we have been able to

seek a solution to the problem and simultaneously study the experience of solving the

problem. During the research we applied ADR in two research areas: mashup ecosystem

and mashup artifact implementation research, and mashware implementation research.

In the following we describe our research efforts in these areas in more detail.

• Mashup ecosystem and mashup artifact implementation research. To

study mashup ecosystems and mashup implementations, we carried out research

cycles where we examined the existing ecosystems and implemented new ones.

In addition, we performed research about mashups on embedded devices and

implemented research artifacts for such platforms as well. The research cycles

taken are described as follows.

1. The first research cycle was about studying mashup ecosystems and imple-

menting one for a specific purpose – playing web video content on mobile

devices, in this case. To gain knowledge about the current research and

state of the art we first studied the existing mashup ecosystems. Then we

identified the most relevant challenges we expected when a mobile mashup

ecosystem would be realized. Finally, we implemented a mobile mashup

ecosystem for Android mobile devices. The results of this research cycle

are documented in Publications I, II, and III. The most significant results

in this cycle were: 1) identifying the four levels where mashups can be sup-

ported on by service providers, 2) identifying the legal constraints of mashup

ecosystems, 3) pointing out numerous implementation considerations, and

4) forming a mashup ecosystem architecture with access to web and local

content.

2. The second research cycle focused on implementing client-side mashups for

desktop and embedded devices, particularly mobile phones. To implement

these mashups we used JavaScript as the programming language and differ-

ent runtime environments to study portability and feasibility of such appli-

cations on different types of devices. The results of the this research cycle are

9

1. INTRODUCTION

documented in Publications IV, V, and VI. The most significant results in

this cycle were: 1) implementing a runtime environment for cross-platform

mobile and desktop mashups, 2) indentifying practical issues when imple-

menting mashups in general and especially on mobile devices, 3) using a

programmatic as well as declarative runtime to host mashup applications on

embedded devices and comparison of these two, 4) thirteen guidelines for

mashup developers, and 5) a reference architecture for mashups.

• Mashware implementation research. To study implementing mashware, we

performed third research cycle where the current state of the art was reviewed

and a mashware application was realized. While performing the literature review

we found out that concepts of mashware are close to what has been suggested to

be included under term “Web 3.0”. In building and evaluation phase we applied

the previous results about mashups to mashware, where software components are

combined similarly to content in mashups. The results of this research cycle were

described in Publications VII and VIII. In this research cycle we 1) pointed out

that mashups and mashware are at the core of what is known as Web 3.0, and

2) we implemented a mashware application with architecture that allows to load

software components as an on-demand service.

1.4 Main Contributions

The main contributions of this dissertation are practical solutions addressing issues on

three main areas of mashup development: mashup ecosystems, mashup development,

and software as a mashup. The contributions are described as follows.

• Mashup ecosystems. This dissertation introduces mashup ecosystems, where

mashup users, mashup authors and service providers collaborate. Dissertation

identifies numerous mashup ecosystem challenges and presents four levels of sup-

port that service providers can offer for mashups. In addition, we describe practi-

cal issues that are faced when a specialized mobile multimedia mashup ecosystem

is implemented.

Technical Contributions. As a technical contribution we collaborated with an

industry partner in building a mashup ecosystem for aggregating videos from

10

1.4 Main Contributions

multiple web video services. As the industry partner had some parts of the

system (mainly on the server-side) already implemented, the solution utilized

those in the final implementation, which consisted of a video client for Android

mobile terminals and a server backend. This technical contribution is explained in

more detail in Publication III, where the ecosystem architecture implementation is

declared. Our preliminary research in preparing to build this system can be found

in Publication II. There is no technical artifact directly related to Publication

I, as the scope of it was to take a broader perspective and describe different

goals and considerations of mashup ecosystems. However, this paper describes

implementation considerations that arise from taking a retrospective view on the

video mashup ecosystem project. Furthermore, the paper identifies four levels

where service providers support mashup developers. These findings are based on

our other efforts to build mashups described under the “technical contributions”

section of the next bullet.

• Mashup development. Mashup development has special requirements that

are not addressed with current engineering practices, implementation techniques,

security models, or architectures. This dissertation introduces practical guidance

that can be applied when mashups are authored with traditional web development

tools. Furthermore, we describe a reference architecture for mashups that directs

mashup developers towards well-defined structure in their implementation. The

architecture promotes maintainability and flexibility of mashup implementations.

Mashups can be implemented on both desktop and mobile devices, as well as other

embedded devices. Creating mashups for devices with restricted capabilities has

special requirements that are described and addressed in this dissertation. For

embedded devices, mobile phones included, we introduce two runtime environ-

ments that can be used for accessing local resources of a device, including files

and peripheral data.

Technical Contributions. During the research we have implemented numerous

mashups, all of which are not described in the included publications. In Publica-

tion IV, we describe five mashup artifacts built on a special runtime environment,

and in Publication VI, three other mashup artifacts are described. Furthermore,

in Publication V, we describe the same mashup artifact implemented with two

11

1. INTRODUCTION

different approaches. The latter approach described in Publication V is one of

the three example mashups described in Publication VI. In addition to these

nine mashup artifacts, our contributions in mashup building include the video

mashup client described earlier. Moreover, there are numerous other mashup ar-

tifacts build by the candidate that are not described in the publications or in this

dissertation introduction.

• Software as a mashup. Composing mashups is not limited to content artifacts,

but executable application components can be composed together as well. This

dissertation summarizes the idea suggested in the literature of such application

development model, or in other words, software created as a mashup. Here, we

portray the mashware playing an important role in the future of the Web. In

addition, we describe the requirements of such system, the most significant issues

of this approach, and a proof-of-concept implementation of software created as a

mashup.

Technical Contributions. As a technical contribution we built a client-side mash-

ware implementation described in Publication VIII that utilizes a simple repos-

itory holding meta data of software components. The repository can be used to

search and download suitable components to be used in a mashware application.

Our mashware artifact has a client-side mechanism to make these downloaded

components available on the fly in the running software. In development of the

mashware artifact we have applied the reference architecture described in Publi-

cation VI.

1.5 Organization of the Dissertation

This dissertation presents how the Web can be used as a platform for mashup ecosys-

tems, how mashups can be composed in practice, and how software could be developed

as a mashup. The following chapters of the introductory part of this dissertation are

organized as follows.

Chapter 2 contains a broad background description about the Web as a mashup

platform, and presents the related work. As a background information, an apporach

to build service-based applications, service-oriented architectures (SOA) are described.

The background includes a description of different types of mashups and approaches

12

1.5 Organization of the Dissertation

that can be used for mashup development. Furthermore, different types of mashup

runtimes and patterns are described.

Chapter 3 describes mashup ecosystems that can be formed implicitly or build

explicitly. After providing an overview to mashup ecosystems, we point out the most

relevant issues of mashup ecosystems and discuss how these issues could be addressed.

Furthermore, we describe our practical implementation of a very specialized mashup

ecosystem targeted at presenting multimedia content on mobile devices.

Chapter 4 includes numerous considerations about mashup composing in practice.

After presenting a practical reference architecture, general design principles for mashups

are discussed. Furthermore, we consider different methods that can be used to access

web and local services. In addition, some specific issues that need to be taken into

account when developing mobile mashups are pointed out. Security is one of the most

difficult issues of mashup composing, and it is addressed as well.

Chapter 5 introduces the idea to compose software as a mashup. After providing an

overview of the subject, we discuss about requirements of such systems and describe the

most substantial issues that need to be overcome. Moreover, we describe our approach

to develop such software along with a proof-of-concept implementation.

Finally, Chapter 6 provides conclusions of the research and revisits the main results

of the work. Publications included in this dissertation are introduced, as well. In

addition, future directions of mashup research are outlined.

13

1. INTRODUCTION

14

2

Background and Related Work

In this Chapter, we provide an overview to service-based web application development

as well as different types of mashups. In addition, we describe web interfaces, which are

used to gain access to content – the main ingredient of mashups. Then, we introduce

mashup development workflow with and without tools. Next, we describe existing

mashup systems that are created as research artifacts. Finally, we present patterns and

runtimes that are available for mashup development.

2.1 Hyperlinking, Portals, and Composite Applications

Mashups have developed from the basic concept of the Web, attaching hypertext doc-

uments via linking, into integrated applications [20, 21]. In the early days, we could

find numerous link collections about different subjects. Today, web contains even full-

featured application ecosystems with scalable server back-ends, multi-platform clients,

and application stores.

Hyperlinking is one of fundamental concepts of the Web. Linking provides a simple

way to navigate from one document to another and can be very easily be implemented

by users. Often a hyperlink from a page to another implies that these two documents

are related or that the page being linked to is recommended. Link collections, i.e.,

categorized lists of hyperlinks, are the first step towards accessing multiple sources of

data simultaneously.

Hyperlinks provide a way to embed data from another domain into a single web

document. Unfortunately, this mechanism is straightforward only with images and

JavaScript code as the same origin policy restricts embedding content from arbitrary

15

2. BACKGROUND AND RELATED WORK

sources [22, 23]. However, the policy has been regarded as inadequate against security

threats in the Web, and consequently numerous enhancements for the same origin policy

have been proposed [24, 25, 26]. In the domain of mashups the same origin policy has

lead into complex ways to circumvent the restriction as described in [16].

Portals are the next step towards web applications that integrate data across do-

mains. Portals have been used by governments, enterprises, as well as individuals to

provide a starting point for web browsing. Typically, portals show information about

the latest events and news, provide search functionality, and contain lists of links. Por-

tals can be composed of “portlets”, pluggable user interface software components. For

instance, Web Services for Remote Portlets (WSRP) [27] is a network protocol standard

for communication with remote portlets. Another portlet specification is Java Portlet

Specification that defines a programming model for Java portlet developers. Java Port-

let Specification version 1.0 was developed under Java Specification Request JSR-168

[28], and backward compatible version 2.0 under JSR-286 [29]. JSR-168, JSR-286, and

WSRP are not competing technologies. JSR-168 may be used to define a portlet, and

WSRP may be used to define a portlet’s operations to remote containers. This way

JSR-168 portlets and WSRP are be used together to define a portlet and to provide

remote operations [30]. Apache Pluto (http://portals.apache.org/pluto/) is a ref-

erence implementation of JSR-286 and JSR-168, and it provides a runtime environment

where portlets can be instantiated, used, and destroyed.

Mashups can be considered as a successor of portals as they often similarly combine

content that is somehow related. However, it is important to make a clear distinction

between portals and mashups. The difference is described in [31] and summarized in

the following. In contrast to mashups portlets are isolated into their own units, the

communication between portlets is little, and the aggregated content is presented side

by side without overlaps. In mashups, the aggregation of content follows “melting pot”

style where the user cannot distinguish data origins based on its appearance in the

user interface. Usually, portal’s content is aggregated exclusively in the server-side,

unlike mashups that can be composed on either server- or client-side. Furthermore,

mashups create something new from the information they are based on, instead of just

aggregating it into a single view.

Another distinction to made is between mashups and composite applications. The

term composite application refers to an application built by combining multiple ex-

16

http://portals.apache.org/pluto/

2.2 Service-Oriented Architectures

isting components into a new application [32]. Typically composite applications use

business sources of information, and they are developed in an enterprise service bus

(ESB) or integrated composition environment (ICE), and therefore creating composite

applications is often tool-oriented and based on special runtime environments instead

of web browsers. Developing composite applications is therefore more difficult for the

end-user and less flexible. Composite applications do not utilize web resources as widely

as mashups that are typically build on web interfaces. However, as mashups and com-

posite applications are so similar, both can be used as tools in enterprises, and even

developed in similar fashion [33, 34, 35, 36].

2.2 Service-Oriented Architectures

Many concepts related to service-based web applications - mashups included - are intro-

duced in an architecture style called Service-Oriented Architecture (SOA) [37]. Despite

that term SOA is often used when discussing about web applications, the architecture

concept can be used without particular implementation technology. SOA describes a set

of principles and methodologies for designing and developing software as interoperable

services.

SOA building elements include service providers and service consumers, as well as

interfaces that are used by service consumers to communicate with service providers.

Other modules that can be included to a SOA are service registry and proxy. The

following description of SOA building elements is based on [37, 38].

Service providers. In SOA approach the software capabilities are exposed as

loosely coupled services. Very important aspect is that service implementation is sep-

arated from the interface, so that service consumer does not have to care about imple-

mentation details. Therefore, SOA approach has major effect on how the software is

managed during its life cycle.

Service consumers. Service consumers access services through service interfaces.

It can be a client application, other service provider, or a software module. As a service

is accessed through an interface, a service consumer needs to know only how to use the

interface, not how the accessed service is implemented. In addition to the interface,

also service location needs to be known by the service consumer to enable access.

17

2. BACKGROUND AND RELATED WORK

Service interfaces. Service interfaces are central part of SOA approach. Interface

acts as a contract between the service’s client and the service provider. It defines request

and response formats as well as other details such as data types, response times among

other quality of service factors, and possible limitations.

Service registry. Service registry enables service discoverability by providing a

directory of the available services. It contains meta data about service providers that

service consumers can search. Web Services Description Language (WSDL) [39] and

Universal Description Discovery and Integration (UDDI) [40] can be used to advertise

web service’s existence, and make it possible for service consumers to find and use them.

Service proxy. Service proxy can be used to simplify service consumer implemen-

tation. It works as a middleman finding a suitable service provider from the service

registry. In addition, proxy can format consumer’s requests to a right format and pass

the request to a service provider. Furthermore, the proxy can cache information about

services or provide some functionalities locally, thus reducing network traffic needed.

SOA characteristics. The most essential SOA characteristics are listed in [41]

and summarized in the following.

• Services are discoverable and dynamically bound. Services can be discovered by

searching the service registry and examining the meta data available. This can

be done at runtime, and service consumers do not necessarily have to know about

services at compile-time. Dynamic bounding requires also messages to be created

dynamically. If a service proxy is available, the service consumer implementation

is more straightforward.

• Services are self-contained and modular. Service modularity is a key concept

in SOA. It can be divided into five fundamental requirements: decomposability,

composability, understandability, continuity, and protection. Modular decompos-

ability means that software problems are divided so independent subproblems,

which can be solved separately. Modular composability ensures that software

modules can be freely combined. Understandability indicates that a service mod-

ule can be understood by a human without information about other modules.

Continuity allows to make changes to modules without major changes to other

modules. Protection refers to an ability to restrict faults within the module the

error took place in.

18

2.2 Service-Oriented Architectures

• Services stress interoperability. Services that are interoperable can communicate

with systems implemented with different platforms and languages. Interoperabil-

ity is achieved by supporting the protocol and data formats of the services current

and potential consumers.

• Services are loosely coupled. Loose coupling in SOA refers to a low number of

dependencies between services. In contrast to tight coupling, modules do not have

many unknown dependencies. This affects directly to system modifiability. By

allowing as few dependencies as possible, service providers can be easily changed

without need to make changes to service consumers. In loosely coupled systems

a service consumer does not need much information about the service provider in

order to use a service.

• Services have a network-addressable interface. In SOA, a service must be network

addressable to enable a service consumer to access the service. This allows arbi-

trary services to be reused by arbitrary consumers at any time. Because parts of

the system interact over the network, it is necessary to pay attention on interface

performance.

• Services have coarse-grained interfaces. In SOA, services are coarse-grained. This

means that a service implements relatively large part of the system and can be

reused as part of another system. In contrast to fine-grained systems, where

subsystems have a lot of dependencies, in SOA a service has relatively few de-

pendencies. This reduces network traffic and simplifies the implementation.

• Services are location-transparent. Services are location-transparent, in other words

a consumer does not know service location before searching the service registry.

Dynamic binding and location transparency allow services to be relocated with-

out consumers knowledge. This allows optimizing system performance by moving

service producers closer to consumers.

• Services are composable. Modular structure of services allows unexpected com-

positions of services. This means that service developer can not anticipate all

possible uses of the service at design time.

19

2. BACKGROUND AND RELATED WORK

• Service-oriented architecture supports self-healing. Self-healing systems can re-

cover internal errors independently. This is important as it simplifies developing

large distributed systems.

In some cases, mashups can be viewed as applications build on SOA services, see

for instance [42, 43, 44, 45]. Mashups can act as service consumers and utilize service

providers as data sources, and access them by using a web enabled interface as a

service interface. There is no global-scale service registry for mashups, even though

ProgrammableWeb (http://www.programmableweb.com), a direcory of mashups and

web services, lists a vast amount of interfaces. However, when a mashware system is

developed, service registry is necessary to be able to locate useful mashware modules.

Sometimes client-side mashups utilize a server-side proxy to perform operations that

would be too heavy to be executed on a client-side device.

2.3 Different Types of Mashups

Mashups can be classified based on numerous criteria. One can classify mashups into

categories based on technical implementation as follows:

• server- and client-side mashups, and

• multiple service and single service mashups.

In addition, classification can be based on the domain of the application as follows:

• commercial and non-commercial mashups,

• enterprise and consumer mashups, and

• situational mashups.

Furthermore, mashups can be classified according to the most essential service used,

similarly to [46]. Some of these mashup classifications appear in the literature. Sep-

aration based on the implementation technology appears in [47] and separation to

enterprise and consumer mashups in [47, 48, 49]. Situational applications are viewed

as mashups in [50]. In the following, mashup categories are described and examples of

different types of mashups are presented.

Server- and client-side mashups. One way to classify mashups is division be-

tween client-side and server-side mashups, based on where downloading, processing,

20

http://www.programmableweb.com

2.3 Different Types of Mashups

and generating of the web content takes place [51]. As illustrated in Figure 2.1, server-

side mashup’s application logic, persistent data storage, as well as accessing different

web resources is implemented on the server-side. Client-side mashups (see Figure 2.2)

are implemented completely on the client-side so that the processing takes place at

the user’s web browser. Because of historical reasons, server-side approach has been

more popular in the past, but as web browsers have gained more processing power and

other capabilities, client-side approach has become common as well. These two types of

mashups have their advantages as well as disadvantages, and they suit for different sit-

uations. For instance a server-side mashup is not limited by browser’s security model,

the same origin policy, that isolates documents loaded from distinct origins from each

other. Naturally, a hybrid approach combining both server- and client-side mashup

techniques is possible as well, and a mashup developer can decide how to partition the

functionality between the server and the client, which is the case in [52], for instance.

Figure 2.1: Server-side mashup architecture. Adapted from [51].

Figure 2.2: Client-side mashup architecture. Adapted from [53].

21

2. BACKGROUND AND RELATED WORK

Infinite Comic (http://infinitecomic.com/), created by John Caruso and Paul

Covello, is an example of a server-side mashup. It combines Twitter (http://twitter.

com) messages with Flickr (http://flickr.com) images by generating comic strips out

of them. The message and image to be combined are chosen by a keyword that user

inputs. Screenshot of Infinite Comic mashup when keyword “dog” is used can be

seen in Figure 2.3. In this case the application logic as well as image processing takes

completely place on the mashup server and only the result comic is loaded to the client.

Figure 2.3: Infinite Comic mashup combines Flick images with Twitter messages.

Another example mashup, created by the author of this dissertation, is using the

same Twitter and Flickr services as Infinite Comic (see Figure 2.4). However, now

the mashup is implemented completely on the client-side. This mashup fetches recent

Twitter messages of a user and displays them on a timeline. If a message is clicked,

a Flickr image related to a randomly chosen word in the message is displayed. Now

the processing and accessing Twitter and Flickr services is implemented directly from

the client without a proxy server. In this case, unstandardized technique called JSON

[54] with Padding (JSONP) is used to circumvent the same origin policy (see http:

//www.json-p.org/).

22

http://infinitecomic.com/
http://twitter.com
http://twitter.com
http://flickr.com
http://www.json-p.org/
http://www.json-p.org/

2.3 Different Types of Mashups

Figure 2.4: Mashup combines Flick images with Twitter messages displayed on a timeline.

A mashup called HousingMaps (http://www.housingmaps.com/) is a classic ex-

ample of a mashup that is implemented with both server- and client-side techniques.

The mashup, developed by Paul Rademacher, presents apartments that are listed in

Graigslist (http://www.craigslist.org/) advertisements. Apartments are displayed

on a map that is created with Google Maps service (https://developers.google.

com/maps/). Apartments can be filtered with criteria such as renting or selling price

and keywords. The mashup uses hybrid approach as accessing the Graigslist data is

done on the mashup server, but Google Maps is used directly from the client.

Multiple and single service mashups. Instead of combining content from mul-

tiple services, which is by definition the usual case, some applications referred to as

mashups are using only one single service to create a new visualization or user interface

for the service. For instance, ProgrammableWeb lists numerous applications accessing

data of a single service as “mashups”.

Often the user interface of this kind of mashups is simplified and added with some

kind of attractive properties. Another kind of single service mashups provide more

advanced ways for accessing the service’s content. For instance, searching of content

can be implemented in a more compelling way than the original service. This is the case

23

http://www.housingmaps.com/
http://www.craigslist.org/
https://developers.google.com/maps/
https://developers.google.com/maps/

2. BACKGROUND AND RELATED WORK

in numerous mashups that show images retrieved from the popular image service Flickr.

Another examples of a single service mashups are Lexisum (http://lexisum.com/), a

web application that creates a printer-friendly summary of a searched Wikipedia article

(http://www.wikipedia.org/), and WikiMindMap that generates a mindmap about

a keyword based on Wikipedia articles (http://www.wikimindmap.org/).

Commercial mashups. Commercial mashups are created to generate profit for

the mashup publisher where as non-commercial mashups are provided non-profit. Typ-

ical example of a commercial mashup combines information about the product being

sold with user reviews from multiple sources. Another type of commercial mashups

is those including advertisements. Commercial mashups are targeted at consumers in

contrast to enterprise mashups that are targeted at business users, even though both

are often created by a company. It is common that a commercial mashup is provided

for mobile device users as an alternative user interface for an electronic commerce.

Examples of commercial mashups are price comparison and product search mash-

ups. For instance, there are numerous mashups offering this kind of service based on

price data of Amazon (http://www.amazon.com/) or EBay (http://www.ebay.com/).

Another kinds of commercial mashups help to locate a certain dealer on a map. Fur-

ther example of a commercial mashup combining social network services is Scupal

(http://www.scupal.com/), a social buying website launched in India. Scupal allows

users to select a product they would be willing to purchase and then gather other in-

terested buyers of the same product within their social networking contacts. The more

there are buyers the less is the price.

Enterprise mashups. Enterprise mashups are developed to solve some particular

business-related problem. They can use closed enterprise data sources and combine the

information with data from the Web [48]. Enterprise mashups can be created solely

by the company’s IT department or a sandbox environment may be provided for non-

experts to create mashups [55]. However, the more degree of freedom is allowed, the

greater are the skills needed for mashup development. Often enterprise mashups are

used to provide a simplified view for huge amount of data to assist with decision making

[50]. Typical to enterprise mashups is that they focus is on a single presentation and

target at providing a tool to help collaboration with different people working on the

same project. Typically aesthetic aspects of enterprise mashups are not as important

as with consumer mashups. Consumer mashups are composed with different public

24

http://lexisum.com/
http://www.wikipedia.org/
http://www.wikimindmap.org/
http://www.amazon.com/
http://www.ebay.com/
http://www.scupal.com/

2.3 Different Types of Mashups

web resources in contrast to enterprise mashups where own data sources are used as

well.

Enterprise mashup markup language (EMML) [56] is a XML-based domain specific

language for developing enterprise mashups. It is developed by the Open Mashup

Alliance (OMA), a consortium dedicated to the successful use of enterprise mashup

technologies, and provided for free under Creative Commons Attribution No Derivatives

(CC BY-ND 3.0) license. With EMML, OMA aims at introducing a standardized,

consistent, and interoperable way to develop enterprise mashups. In addition to defining

the language, OMA provides a reference implementation of a runtime that processes

mashup scripts written in EMML.

EMML can be used to declaratively describe the data processing flow of a mashup.

It includes six types of operations: fetch, mash, enrich, control, database and input/out-

put (IO). Operations are listed in Table 2.1. Typically XPath (XML Path Language)

[57, 58] expressions are used in EMML to work with the results and variables in mashup

scripts. However, other scripting languages such as JavaScript, Groovy, JRuby, and

XQuery can be used as well.

Table 2.1: EMML operations [56].

Fetch Mash Enrich Control Database IO

directinvoke filter append if, else sql input

invoke sort construct while sqlupdate output

group annotate for sqlBeginTransaction display

join assign foreach sqlCommit variable

merge parallel sqlRollback

select sequence datasource

Situational mashups. Term situational application is used about an application

that is created for a narrow group of users with unique needs. In Clay Shirkys essay

Situated software [59] this type of applications are described to be “designed for use

by a specific social group, rather than for a generic set of ’users’ ”. Typically situa-

tional applications have short life span and the quality of engineering may not be first

class. In addition, scaling up is often difficult with situational applications. However,

Shirky remarked that as the group of users is relatively small, it is often unnecessary

to implement mechanisms for user supervision. Furthermore, situational applications

25

2. BACKGROUND AND RELATED WORK

are typically more personalized, and they can contain pre-entered information that is

relevant only for the small group of intended users.

Some mashups are developed as situational applications [50]. As simple mashups

that utilize readily available interfaces can be composed together rather quickly, the

cost of implementation is relatively low. Therefore, mashups can be targeted at small,

specific groups of users and be very personalized. The architecture and other engineer-

ing aspects of this kind of mashups may not be the most polished, but with the specific

target group and purpose, it does not have resonance. One should bear in mind, how-

ever, that when mashups are used to address non-trivial, more complicated issues, this

approach should not be used as it quickly leads to difficulties.

The most essential service. One way to establish a classification is to use

the type of the most essential service as a basis to determine the mashup type. For

instance, a mashup can be classified as social, news, map, image, video, audio, or

search mashup in accordance to the main service it utilizes. Mashup statistics divided

into categories based on the essential service used in a mashup can be collected from

ProgrammableWeb, which is a web site providing statistics about consumer mashups

as well as service interfaces used to create new mashups. Only those mashups that are

submitted to the service are listed, and the site does not list enterprise mashups at

all. However, ProgrammableWeb can be used as a source for suggestive information

about consumer mashups. As can be seen in Figure 2.5, mapping mashups are the

most popular type of mashups. Search, social, photo, shopping, and video mashups are

roughly equally popular.

2.4 Web Interfaces

Mashups are build on one or more interfaces exposed over the Web. Interfaces can be

used to access resources such as images, videos, audio, and texts. Other type of inter-

faces can be used to perform some operations, such as sending a message, transcoding

data from a format to another, creating automatic metadata, identifying image con-

tents, searching for arbitrary content, visualizing content, translating text, recognizing

speech, transferring money, and shopping for products, among others. Furthermore,

web interfaces can be used to request application components. For instance, the most

popular web interface, Google Maps, can be used to create a rich map widget into a

26

2.4 Web Interfaces

Figure 2.5: Mashup types according to ProgrammableWeb (http://www.
programmableweb.com/mashups). ’Deadpool’ refers to discontinued mashups.

web application. There are numerous web interfaces available for user interface widgets,

security features (e.g. user authentication or CAPTCHA services), database accessing,

and maintenance (e.g. automatic application error notification), etc. According to

statistics at ProgrammableWeb (see Figure 2.6) Google Maps service is the most pop-

ular interface used in mashupping. Twitter, YouTube (http://www.youtube.com/),

and Flickr are the next ones, with roughly equal popularity.

Figure 2.6: Web interfaces used in mashups according to ProgrammableWeb (http:
//www.programmableweb.com/apis).

The rationale behind exposing services to be used in arbitrary web applications can

vary. Sometimes service providers charge users or the application publishers according

27

http://www.programmableweb.com/mashups
http://www.programmableweb.com/mashups
http://www.youtube.com/
http://www.programmableweb.com/apis
http://www.programmableweb.com/apis

2. BACKGROUND AND RELATED WORK

to the usage of the service’s Application Programming Interface (API). However, more

commonly a service is provided for free, and sometimes the developers are even paid

for using an API in an application. Services provided for free can include banners or

other types of advertisement. However, it is common that instead of advertising, service

provider is interested in expanding the reach of the service and making their product

easy to access via different routes.

Web interface legal terms and conditions are diverse. Commonly service providers

set restrictions for those uploading content to the service, as well as those utilizing

service’s content through the API, including mashup developers. In the following,

some typical requirements and terms that affect mashup development are explained.

• Service-level Agreements (SLAs) are used to provide uptime guarantee or to state

that the service has no liability for downtime or unexpected changes. Sometimes

the latter is available for those who use the interface for free, and the former for

paying customers.

• If the interface allows accessing user created content under different licenses, terms

of service require developers to strictly follow those licenses. If an application

uses a cache, also the cache needs to reflect changes in content’s licenses and

availability. Sometimes service terms determine time limits for the cache reflecting

these changes. Moreover, caching may be forbidden completely.

• If the interface enables accessing user’s private data, terms of service can include

restrictions about how this data can be used and stored.

• Service provider’s logo or other branding may required to be explicitly available

in the mashup. Other services require adding acknowledgements to application

source code. Detailed terms on how the branding is presented may be set. For

instance, Google Maps service requires that the Google logo should not be the

largest logo in an application implementation, except as displayed in the map

image itself (https://developers.google.com/maps/terms).

• Interface use rate can be limited to a certain amount of requests in a time pe-

riod. For instance, Twitter limits unauthenticated calls to 150 requests per hour

and authorized calls to 350 requests per hour (https://dev.twitter.com/docs/

rate-limiting).

28

https://developers.google.com/maps/terms
https://dev.twitter.com/docs/rate-limiting
https://dev.twitter.com/docs/rate-limiting

2.4 Web Interfaces

• Certain types of applications may be prohibited. For instance, Flickr terms of

service deny using Flickr API for any application that replicates or attempts

to replace the essential user experience of Flickr.com (http://www.flickr.com/

services/api/tos/).

• Repeated violations of interface terms, for instance exceeding of use rates or

using the API in forbidden type of application, may result service provider to

terminate certain application from accessing the interface. Technically this can be

achieved restricting application IP or application specific API key from accessing

the service. Terms of service often contain a clause for such situation.

Web interfaces usually follow some common interface design style. Recently, inter-

faces following REST (representational state transfer) architectural style have become

popular, but numerous other styles such as SOAP (simple object access protocol) and

other RPC (remote procedure call) interfaces are still common. In addition, web ser-

vices can provide programmatic JavaScript interfaces that are relying on libraries used

with regular JavaScript function calls. In the following these main web interface styles

are described in more detail.

REST interfaces. Server-client interface architecture based on representational

state transfers (commonly referred to as RESTful services or interfaces [60]) was in-

troduced by Roy Fielding in his doctoral dissertation [61]. Design goals of the archi-

tecture are scalability, generality of interfaces, independent deployment of resources,

and allowing intermediary components. In a RESTful service, resources are referenced

with global identifiers, and in order to manipulate these resources, components of the

network (clients and servers) communicate using a standardized interface. Using the

interface, components exchange representations of resources. For instance, a resource

representing a user may return a representation that contains user’s unique identifica-

tion number, username, real name and age. Listing 2.1 is an example of a request to a

RESTful service and a response containing representation of two users.

To achieve generality of interfaces in REST architecture, only a set of well-known

standard operations is allowed. In the case of HTTP these operations are GET,

POST, PUT, and DELETE, commonly referred to as CRUD (create, retrieve, up-

date, and delete) [62]. Resources in a RESTful service are accessed through unam-

biguous self-descriptive addresses, which in the case of a web service are URIs, such as

29

http://www.flickr.com/services/api/tos/
http://www.flickr.com/services/api/tos/

2. BACKGROUND AND RELATED WORK

Listing 2.1: Example of requesting a resource with REST interface.

GET /users?username=test HTTP /1.1

Host: www.example.com

Accept: application/javascript

HTTP /1.1 200 OK

Content -Type: application/javascript

Expires: Wed , 16 Jan 2013 16:00:00 GMT

[

{

"id":1,

"username ": "testuser1",

"realname ": "John Smith",

"age": 42,

"groups ": [

{ "ref": "../ groups /1" },

{ "ref": "../ groups /4" }

]

},

{

"id":2,

"username ": "testuser2",

"realname ": "John Doe",

"age": 24,

"groups ": [

{ "ref": "../ groups /1" }

]

}

]

30

2.4 Web Interfaces

http://www.example.com/users/1 in Listing 2.1. Moreover, resource representations

contain references to other resources, for instance in Listing 2.1 users are linked to

groups.

RESTful web interfaces often make use of Internet media types (originally called

MIME types [63]) as well as HTTP request and response codes. In Listing 2.1 the

response media type is application/javascript, and the HTTP status code is 200,

which means that the request was successful. Typically resources are served in CSV

(Comma-Separated Values), XML, or JSON format, and often the response format can

be determined in the request. In Listing 2.1 the request header Accept determines

the response format as application/javascript and consequently a JSON formatted

document is returned.

In RESTful services the state of a resource is preserved on the server, and the

client-side is responsible of preserving the state of an application. However, to enhance

scalability, the REST protocol itself is stateless, as the web server does not preserve

state of the client. Therefore, if other clients need to be aware of a client state, the

state needs to be transferred between them instead of storing it to the server.

Other constraints of RESTful services are cacheability and possibility to add trans-

parent intermediaries (layers) between the client and the server. Both these constraints

increase scalability of the system. Because of requirement for cacheability, resources

need to define themselves as cacheable or non-cacheable to prevent clients from mis-

using resources. HTTP response may also contain Expires field that tells the client

when the resource is going to expire. The ability to add transparent layers to the

system makes possible to increase scalability of the system by adding load balancing

servers and shared caches.

RPC interfaces. The first RPC (Remote Procedure Call) interfaces were intro-

duced in 1970s [64], and today there are many incompatible implementations of RPC

protocol. By using RPC messages, a client sends a request to a server, which executes

specified procedure and sends the result back to the client. Calls to the server may

be synchronous or asynchronous. With RPC model it is possible to use remote ser-

vices with familiar-looking function or method calls with parameters that the server

expects. Often a proxy can be used at client- and server-side to convert a function call

to a network message, which makes calling remote resources convenient for developers.

31

2. BACKGROUND AND RELATED WORK

RPC-based systems, however, lack support for caching. Therefore, RPC fits poorly for

some large-scale systems, as caching is often critical for scaling [65].

The most common RPC protocols used in the Web are SOAP, XML-RPC and

JSON-RPC. In RPC web interfaces the actual request object is transferred in the

message body. Instead of utilizing standard HTTP operations, RPC style interfaces

often call interface specific functions or methods directly with HTTP POST messages.

Therefore, message overhead is higher with RPC interfaces than with RESTful services.

This can be seen in Listing 2.2, which implements the same functionality as Listing 2.1

with a SOAP interface.

Programmatic JavaScript interfaces. Some services offer a programmatic Java-

Script interface or an API to access their service. This kind of web interfaces are often

targeted at browser-based applications, and typically the interface needs to be reim-

plemented for other types of runtime environments. Accessing a programmatic API is

done by including a JavaScript library in the application, and by calling the library’s

functions and objects with programmatic JavaScript calls. Using the interface in this

way is convenient, as it is similar to using other JavaScript interfaces of the browser.

When a web browser acts as a runtime environment, using a JavaScript library is

done with a script element, which is included to the web application either statically

in the HTML markup or dynamically with a JavaScript call. A library can reside on the

same server as the application or on the service provider’s server, as the script element

does not enforce same origin policy, which allows to download the library from a foreign

origin. If the service provider requires using an API key for identifying the application,

the key is typically included as a parameter in the script element’s attribute specifying

the location of the library.

Interface examples. At the time of writing, Google Maps API family contains

five different interfaces: Maps JavaScript API, Maps API for Flash, Google Earth API,

Static Maps API and Web Services API. The Maps JavaScript API is the one used to

create most map-based mashups, and an example of using this API is shown in Listing

2.3. To be able to use the interface a JavaScript file containing Google Maps API

library functions needs to be added into the HTML document with a script element.

Google Maps API requires using an API key, unique string that is passed to the service

to identify applications and attach them to domain names. In addition, a div element

needs to be added for the Google Maps API to render on. Now all API functions can be

32

2.4 Web Interfaces

Listing 2.2: Example of requesting a resource with SOAP interface.

GET /users HTTP /1.1

Host: www.example.com

<?xml version ="1.0"? >

<soap:Envelope

xmlns:soap="http ://www.w3.org /2001/12/ soap -envelope"

xmlns:m="http ://www.example.com/users">

<soap:Header >

<m:DeveloperKey >1234 </t>

</soap:Header >

<soap:Body >

<m:GetUserData >

<m:UserName >test </m:UserName >

</m:GetUserData >

</soap:Body >

</soap:Envelope >

HTTP /1.1 200 OK

<?xml version ="1.0"? >

<soap:Envelope

xmlns:soap="http ://www.w3.org /2001/12/ soap -envelope"

xmlns:m="http ://www.example.com/users">

<soap:Body >

<m:GetUserDataResponse >

<m:User >

<m:UserId >1</m:UserId >

<m:UserName >testuser1 </m:UserName >

<m:RealName >John Smith </m:RealName >

<m:Age >42</m:Age >

</m:User >

<m:User >

<m:UserId >2</m:UserId >

<m:UserName >testuser2 </m:UserName >

<m:RealName >John Doe </m:RealName >

<m:Age >24</m:Age >

</m:User >

</m:GetUserDataResponse >

</soap:Body >

</soap:Envelope >

33

2. BACKGROUND AND RELATED WORK

Listing 2.3: Example of adding a map component with Google Maps JavaScript API.

<script

type="text/javascript"

src="http :// maps.googleapis.com/maps/api/js?key=API_KEY" >

</script >

<script type="text/javascript">

function initialize () {

var myOptions = {

center: new google.maps.LatLng (-34.397, 150.644) ,

zoom: 8

};

var map = new google.maps.Map(

document.getElementById (" map_canvas "),

myOptions

);

}

</script >

<div id=" map_canvas" style=" width :500px; height :500px" />

used with JavaScript function calls. In Listing 2.3 a JavaScript function initialize()

is defined to add a map component with fixed location and zoom level into the div

element with ID map canvas.

Flickr, a popular service intended for social image sharing, has different kind of

approach for an API. Although it uses an API key similarly to Google Maps, the service

is used in different fashion with requests to and responses from the interface. Flickr

allows REST, XML-RPC and SOAP formatted requests. Response is also available

in multiple formats including REST, XML-RPC, SOAP, JSON and PHP. Response

format needs to be explicitly defined in each request.

Listing 2.4 contains an example request that calls method flickr.photos.search

to search images with tag cat. Only one image is requested and the response format

is determined to be JSON. Flickr API implicitly wraps the response with a function

call to jsonFlickrApi function, which is often convenient if the API is used with an

application running in a web browser. Even though the Flickr API call looks RESTful,

actually REST architectural principles do not allow an explicit method call in requests.

34

2.4 Web Interfaces

Listing 2.4: Example of requesting a resource with Flickr API.

GET /services/rest/? method=flickr.photos.search&

format=json&tags=cat&per_page =1& api_key=API_KEY HTTP /1.1

Host: www.flickr.com

HTTP /1.1 200 OK

Access -Control -Allow -Origin: *

Cache -Control: private

Content -Type: text/javascript

jsonFlickrApi(

{

"photos ": {

"page":1,

"pages ":4736416 ,

"perpage ":1,

"total ":"4736416" ,

"photo ":[

{

"id ":"6961222925" ,

"owner ":"29503400 @N04",

"secret ":"5 b064a6536",

"server ":"7037" ,

"farm":8,

"title ":" Sleeping Beauty",

"ispublic ":1,

"isfriend ":0,

"isfamily ":0

}

]

},

"stat ":"ok"

}

)

35

2. BACKGROUND AND RELATED WORK

2.5 Mashup Development

Mashups can be developed with conventional web programming techniques using text

editor and environment with debugging capabilities [21]. However, dedicated mashup

development tools can be helpful, especially when end-users are creating mashups.

Typical target environment for dedicated tools is a web browser. Figure 2.7 presents

technology stack adapted from [47, 49], which is used when mashups are built on web

services. Most mashup applications include one or more elements from each layer of

the stack, but there are mashups that do not use some layers at all. For instance,

a client-side mashup can interact with the data directly without a web service as a

backend, or a mashup implemented as a library may lack components from the user

interface layer. The elements in the stack can be combined freely, for instance a mashup

can use HTML content as a source data, have a backend written in Pyhon, and use

REST interface to communicate with client applications implemented in JavaScript

and native UI widgets. In the following, we provide an overview about manual mashup

development and mashup development with dedicated tools with a web browser as a

target environment.

Figure 2.7: Technology stack used in mashups, where stack layers are separated with
dotted lines. Adapted from [47, 49].

36

2.5 Mashup Development

2.5.1 Manual Mashup Development

Mashup development starts by specifying the core functionality of the mashup. In

typical mashup development process, following phases can be identified (similar mashup

development scenarios and processes have been explained in [66] and [21]):

• Selecting data sources. Finding suitable data sources can be cumbersome as

the quality of web services is varying. The selection can be based on multiple cri-

teria such as price, reliability, available request and response formats, availability

of documentations, API usage limitations, and other terms of service.

• Accessing data sources and data handling. Mashup needs to be able to ac-

cess the data sources with HTTP interfaces, which can follow different program-

ming models. Moreover, when accessing local resources such as files or device

peripherals, interfaces for such services need to be provided by the runtime envi-

ronment. Furthermore, data needs to be parsed, filtered, and possibly converted

into a common format as well as stored into mashup’s internal data storage.

• Creating core mashup functionality. After the source data is in suitable

format, actual mashup creation is usually straightforward. In this phase the

actual application logic of the mashup is defined and programmed.

• Debugging and testing. Development style of dynamic mashups is typically

different from developing traditional static applications. A mashup needs to be

constantly tested during the development process, and tests are necessary with

different browsers and browser versions.

Client-side web applications can be constructed using a combination of JavaScript,

HTML, and CSS. Usually browser-based mashups are built with some JavaScript frame-

work, which can be used when creating the user interface, interfacing with web services,

and performing animations. Commonly used JavaScript frameworks include the follow-

ing (in alphabetical order):

• Dojo (http://dojotoolkit.org),

• jQuery (http://jquery.com),

• Prototype (http://www.prototypejs.org), and

• Scriptaculous (http://script.aculo.us).

37

http://dojotoolkit.org
http://jquery.com
http://www.prototypejs.org
http://script.aculo.us

2. BACKGROUND AND RELATED WORK

There are also numerous specialized frameworks targeted at handheld platforms.

These include the following:

• jQuery Mobile (http://jquerymobile.com),

• jQuery Touch (http://jqtouch.com),

• Sencha Touch (http://www.sencha.com/products/touch), and

• Titanium Mobile (http://www.appcelerator.com/platform).

Some of the frameworks are relatively recent and in beta or alpha stages. Therefore,

a developer has to deal with a number of issues related to unexpected behavior of

frameworks. Furthermore, documentation quality of the frameworks varies. Some of

the frameworks have complete examples and thorough documentation, but others are

more or less insufficient in these areas. JavaScript does not inherently support modules,

and using two JavaScript frameworks together may lead to namespace conflicts. For

instance, some popular libraries use the dollar sign ($) as a shortcut syntax for function

calls. This has been taken into account in some frameworks, but others are difficult to

mix.

2.5.2 Mashup Development with Tools

End-user programming of mashups is a widely researched topic. As mashups by def-

inition add value from the end-user perspective, enabling end-users to compose their

own mashups would be a great benefit. However, creating mashups is not straightfor-

ward without web development skills. Therefore, number of mashup development tools

have been emerging to help end-users to create their own mashups without knowledge

about programming languages, data formats, and hosting environments. The most

popular mashup tools include (in alphabetical order) IBM Mashup Center, Intel Mash

Maker, and Yahoo! Pipes. Numerous tools have been discontinued, and these include

products made by major companies such as Google’s Mashup Editor and Microsoft’s

Popfly. Some of these tools have also been evaluated from end-user perspective [67],

and Taivalsaari introduces a number of tools in [16]. Academic efforts in developing

tools for mashup creation are DashMash [68], Marmite [69], and Vegemite [70]. In

principle, any web enabled platform can be used to create mashups. Even spread-

sheet applications such as Microsoft Excel and OpenOffice Calc have been used as

mashup environment among other table-based systems, and the reader is referred to

38

http://jquerymobile.com
http://jqtouch.com
http://www.sencha.com/products/touch
http://www.appcelerator.com/platform

2.5 Mashup Development

[71, 72, 73, 74, 75, 76, 77]. Furthermore, Cao et al. have studied mashup tools from

debugging perspective in [78].

IBM Mashup center (https://greenhouse.lotus.com/) is a commercial browser-

based enterprise solution for presenting and combining data. It has widgets for dis-

playing, requesting, and transforming data. Mashup composing can be done using a

visual browser-based tool where widgets are connected to form a system that acquires,

handles, transforms, and combines data. Furthermore, the Mashup Center includes a

catalog for sharing and discovering mashup components. Components can be tagged,

rated, and commented by users. In addition to web resources, local files can be used

as source data.

Intel Mash Maker [79] (http://mashmaker.intel.com/) is a Firefox browser ex-

tension that allows showing information from other web pages related to content of

current web page browsed. In contrast to IBM Mashup Center and Yahoo! Pipes, the

mashups created with Mash Maker are implemented as client-side mashups. In Mash

Maker mashups, information from other pages is shown inside widgets or windows that

appear on top of the original content. Therefore, the result is not very integrated and

the widgets block the original content. Intel Mash Maker also includes a community

maintained database of extractors that can be used to extract structured data out of

unstructured sources, such as arbitrary web sites.

Yahoo! Pipes (http://pipes.yahoo.com/pipes/), shown in Figure 2.8, is another

browser-based visual mashup tool that introduces a way to combine data sources via

wiring pre-configured modules together. Modules can fetch the data they use from

an external source or alternatively take user filled text and numbers as input data.

Plug-and-play modules for popular services such as Flickr and Yahoo! Local (http:

//local.yahoo.com/) are available to create a direct hook-up to the service. Mashups

created with Yahoo! Pipes are hosted on the Yahoo! servers. In a research by Stolee

et al. [80], different ways to refactor mashups created with Yahoo! Pipes are identified

and discussed.

As for more academic tools, DashMash is a tool developed by Cappiello et al. [68]

for composing server-side enterprise mashups. DashMash has a visual editor to compose

the mashup out of components that can be used to retrieve, filter, and render content.

In the visual editor, components are added to the system by dragging them from a

component menu into mashup workspace. The system includes a recommendation

39

https://greenhouse.lotus.com/
http://mashmaker.intel.com/
http://pipes.yahoo.com/pipes/
http://local.yahoo.com/
http://local.yahoo.com/

2. BACKGROUND AND RELATED WORK

Figure 2.8: Yahoo! Pipes example Pipe fetches Flickr images around user specified
location.

mechanisms that tries to help users composing their mashups. In addition to the

ability to determine custom bindings, components have predefined default bindings

that determine how the components work in co-operation. Default bindings ensure that

some functionality is achieved just by adding components into the mashup composition.

Marmite is an end-user programming tool for creating mashups [69]. The system

is implemented as a Firefox browser extension. Marmite supports extracting content

from web pages, processing it in data flow manner, and combining it with other content.

The result can be map, text file, or web page. The programming model of Marmite is

similar to Yahoo! Pipes, and extracting, manipulating, and displaying data is done by

connecting ready-made modules together and by determining different parameters for

these modules.

Vegemite is another academic effort to enable end-users to create mashups [70]. It is

an extension for CoScripter end-user programming system [81], which is implemented

as a Firefox browser extension. The programming model of Vegemite is based on a data

table that is augmented and manipulated with CoScripter scripts. However, in the user

study it was found out that using scripts to determine the mashup functionality was

very challenging for users without programming experience [70].

40

2.5 Mashup Development

2.5.3 Mashup Systems for Cross-Domain Communications

Some research efforts have been focusing on creating mashup frameworks to ensure

mashup security while accessing resources in separate origins. Some of these frameworks

are targeted at unmodified web browsers, while others require a modified browser or

browser extensions to be used.

CompoWeb [82] is a system where mashups can be composed of gadgets that are

isolated from each other. Gadgets are developed with a combination of HTML and

JavaScript. The system defines a new HTML tag <gadget>, three new HTML meta

types, and several global JavaScript objects and functions. The system is requires two

browser extensions to be able to support the customized HTML.

To create a fine-grained solution for mashup security, Crockford has proposed intro-

ducing a <module> tag to be able to partition a web page into a collection of modules

[83]. The communication between modules is permitted only through cooperating send

and receive functions, and it is restricted only to JSON text. In addition, JavaScript

code execution is sandboxed into the context of modules. Support for modules can be

added to some browsers with an extension.

MashupOS [84] is another system where new HTML elements with different types

of security levels are used to enable secure cross-domain communication. In addition,

message passing is enabled with JavaScript objects, but the communication is restricted

to “data-only objects” such as numbers or strings, or collections of these objects. The

system is implemented to work with a customized web browser.

OMash [85] uses security levels of MashupOS as a starting point and provides a

simplified version of them. OMash uses object abstractions to enable secure mashups,

as is treats web documents as objects and allows documents to communicate only

through their declared public interfaces. OMash can be used only with a customized

web browser.

Subspace [86] is a client-side system for enabling secure mashups, and it works with

unmodified web browsers as the implementation is built on iframe elements, which are

referred to as frames. Frames in Subspace have different domains, but as the domain

attribute of a frame can be relaxed, JavaScript message objects can be passed between

frames. Consequently, data from one domain can be passed to a frame of different

origin.

41

2. BACKGROUND AND RELATED WORK

SMash [87] is similar high-level communication framework to mashups as Subspace,

and it can be used in an unmodified browser as well. In SMash a web application is

divided to components, which are implemented as iframe elements. SMash enables

communication between the components with a channel implemented using URI frag-

ment identifiers [88], and unlike Subspace, dynamic domain changes are not necessary.

Another security related study is a lattice-based mashup security model by Maga-

zinius et al. [89]. The security lattice is build from the origins of mashup components so

that the each level of the lattice corresponds to a set of origins. To allow a controlled

release of information between mashup components, a declassification mechanism is

proposed. Declassification policy defines what pieces of information can be shared be-

tween components, so that sharing between components on the same level of the lattice

is unrestricted, but limited between other levels. Sharing data from security level to

another can only be done if it is explicitly allowed.

Ikeda et al. [90] have designed a framework for creating flexible mashups in which

the user can selectively browse trough mashup items. The framework includes data

management engine for on-demand data generation and GUI widgets that can be used

to browse the data. These are both implemented on client-side as well as connections

to different web services. On the server-side the framework provides only configuration

files for widgets and data management.

Service access control API that aims to better mashup security has been studied by

Hashimoto et al. [91]. The SAXAE API provides functions for the mashup to retrieve

protected, non-public resources. This allows the mashup to access users private data,

for example on a social service, in secure fashion.

2.5.4 Mashup Patterns

Design patterns in software industry are general reusable solutions to some commonly

occurring problem. Patterns describe how a certain type of problem can be solved in

many different situations. Even though mashups are often tailored to solve a particular

problem, there are repeating problems that can be identified. Well-thought mashup

patterns can be used as a starting point when solving this kind of issues. Ogrinz

classifies mashup patterns into five categories: harvest patterns, enhance patterns,

assemble patterns, manage patterns, and test patterns [92]. Based on [92], a brief

overview of the pattern categories is provided in the following.

42

2.5 Mashup Development

Harvest patterns. Harvest patterns describe methods for extracting information

from resources previously viewed as closed. It is common that mashups rely solely on

public APIs, but for instance in enterprise context, mashups can be build on closed

resources to be able to use them to solve specific business related problems. Harvesting

is used to extract data from both structured and unstructured sources. Structured

sources can be databases, RSS feeds, XML, and other data streams. Unstructured

sources can be web sites, binary files, or free form text. Harvest patterns include

mechanisms to navigate to important information and then retrieve it. For instance,

Ogrinz identifies two harvest patterns referred to as API Enabler and Infinite Monkeys.

The former is used to create REST or other kind of interface for previously closed

resources, and the latter is used to extract larger quantities of data to be examined

more closely later. Often these two can be combined or executed in parallel.

Enhance patterns. Without regular attention, applications degenerate. This

happens inevitably as sooner or later something that the application is build on changes

and breaks the application or makes it obsolete. This applies to mashups, too. Enhance

patterns make keeping mashups running less time and money consuming. This happens

in five ways: extending mashups to a wider audience, fixing bugs without touching the

underlying code, making software more user friendly, improving the “findability” of

data, and incorporating changing business rules. In contrast to harvesting patterns,

enhance patterns show the benefit of leaving data as it is. Enhance patterns have

emphasis on changing the interaction model of a mashup to keep it useful.

Assemble patterns. Assemble patterns can be used when developing the core

function of mashups: adding resources together from multiple sources to create some-

thing new. Often the problem to be solved with assemble patterns is availability of

source data in suitable format or converting data from a format to another. Sometimes

the problem is the amount of data, which is so excessive that presenting it to the user

becomes an issue.

Manage patterns. Data management is often at the core of information technol-

ogy. Therefore, mechanisms for transmitting and storing data are needed. However,

transitioning between data handling systems, condensing data, and securing access to

data are important functionalities as well. Manage patterns can be used to include this

kind of actions to mashups.

43

2. BACKGROUND AND RELATED WORK

Test patterns. As mashups can be developed by users, there is also an obligation

for the users acting as developers to test their mashups at least in some degree. Test

patterns describe mechanisms that are easy to understand and implement in mashups.

2.6 Mashup Runtimes

Web browser is not the only execution environment for mashups. In fact, mashups can

be executed on other environments that fulfill the following basic requirements, listed

originally in [93] and summarized as follows:

• Access to resources. A mashup environment should allow liberate access to

resources with asynchronous HTTP. Most web interfaces are accessed with proto-

cols that are based on HTTP. Possibility to make asynchronous requests enables

accessing web resources in a non-blocking manner. In addition, an environment

should have inbuilt support for parsing data in JSON and XML formats. Most

web interfaces offer their data in these formats, and it is convenient to be able to

parse it automatically.

• Support for creating user interfaces. Support for attractive graphics is

important for a mashup environment. User’s perception of quality is often based

on look and feel of the system. Some mashups are solely based on providing the

same functionality as the original service, but with more attractive visualization.

The environment should provide ready for use widgets and other components that

could be used as building blocks for the mashup user interface.

• Support for dynamic programming. Environment support for a dynamic

programming language is vital when accessing web resources with interfaces that

are prone to changes. Even though static languages are traditionally used in

systems with limited resources, recent development of language engines and device

capabilities has enabled using dynamic languages on embedded devices as well.

JavaScript is currently the most widely supported dynamic language, as it has

become the industry standard in web browsers. Therefore, using it as the language

of choice is often beneficial, because this enables utilizing the same libraries that

are available for browser applications in mashups.

44

2.6 Mashup Runtimes

• Access to user’s context. When JavaScript or other language is chosen, it

is important to have necessary bindings for accessing device interfaces. These

interfaces can include camera, Bluetooth (http://www.bluetooth.org), location

sensors, and other peripherals. Bindings to such services enable development of

context aware mashups.

• Fine grained security model. Fine grained security model is necessary when

building mashups, and it is justified as a basic requirement as explained in [93].

Web browser’s security model, the same origin policy, forces applications to func-

tion through a single domain. As mashups access multiple web interfaces on

different domains, developers use proxies or other means to circumvent the same

origin policy, effectively making the security model ineffectual [94]. More so-

phisticated security model is clearly necessary, and recent developments by W3C

(see http://www.w3.org/Security/ as well as [95]) are currently addressing the

problem.

Environments that fulfill these requirements include different widget platforms and

rich internet application (RIA) platforms available for desktop computers. If the target

device is not a regular computer, use of a custom runtime environment is even more

practical. Many mobile manufacturers have their own web application frameworks

and there are cross-platform solutions, as well. In Publication V we introduce two

runtime environments that can be used for mashups in mobile devices and describe

how it is possible to create mashups by combining dynamic code and native binary

libraries. This kind of hybrid approach can combine the flexibility of dynamic code

and the performance of binary applications. Important design decisions in this kind

of implementation are how the functionality is divided between static and dynamic

parts of the application, and how technical issues related to combinations of scripts

and binaries are solved.

New web technologies are offering promising building blocks for composing web

applications. For example, WebGL [96] is enabling 3D graphics API to be used inside

a web browser without plugins, and HTML5 [11] is bringing support for embedded

audio and video, cross-document messaging, offline functionality, and local data storing,

among others. Applying HTML5 technologies to mashup development has been studied

by Aghaee and Pautasso in [97]. Third version of CSS [6] adds numerous ways to

45

http://www.bluetooth.org
http://www.w3.org/Security/

2. BACKGROUND AND RELATED WORK

determine the visual appearance of elements in web documents. Various effects that

have been previously implemented with undocumented “hacks” can now be described

in standardized manner with CSS code. These are remarkable improvements that will

gear the web browser into more and more powerful platform for complex applications.

From mashup development point of view these tools can enable compositions that are

yet completely unforeseen.

46

3

Mashup Ecosystems

In this Chapter, we consider mashup ecosystems that are formed by users, mashup

authors, and service providers, and where mashups and services are connected through

web interfaces as has been visualized in Figure 3.1. Here, we have considered only those

actors that interact in the ecosystem by producing, altering, or consuming the content.

In other words, mashup ecosystems could include other actors as well, including, but

not limited to, tool providers, researchers, regulators, and so forth.

Figure 3.1: Mashup ecosystem built on three services and containing three mashups.

We start by providing background information about mashup ecosystems. Then

we describe three perspectives to mashup ecosystems and introduce four levels of sup-

port that service providers can offer for mashup developers. In addition, we discuss

about characteristics of explicit and implicit mashup ecosystems. Furthermore, we in-

troduce challenges that mashup ecosystems encounter, as well as present our practical

implementation of a mobile multimedia mashup ecosystem. The background Section is

47

3. MASHUP ECOSYSTEMS

mainly based on the literature, while other Sections in this Chapter are based on our

own research, if not stated otherwise.

3.1 Background and Related Work

According to definition by Bosch in [98], “A Software Ecosystem consists of the set of

software solutions that enable, support and automate the activities and transactions

by the actors in the associated social or business ecosystem and the organizations that

provide these solutions”. Since mashups by definition combine data from multiple

sources, the stakeholders that provide this data form an ecosystem [14] – in other

words a set of entities that act as a single unit instead of each participating business

acting separately. In [98] Bosch reviews mashup ecosystem from end-user programming

point of view. Furthermore, the same article poins out two success factors as well

as two challenges that this ecosystem has. The two success factors are, first, the

value that end-users gain by designing their own applications, and second, sharing of

applications among users. The two challenges are enabling the end-user programming

for inexperienced developers and minimizing ecosystem maintenance efforts. Moreover,

Bosch identifies so called “undirected developers” that are able to use the platform in

unforeseen ways and provide significant innovations for the overall ecosystem.

A mashup ecosystem can be considered to include all possible web interfaces and

mashups build on top of them, which is the case in Yu’s and Woodard’s research about

mashup ecosystem characteristics [99]. Yu and Woodard describe the mashup ecosys-

tem by using the ProgrammableWeb mashup indexing service’s data as the source.

They investigate the structure and dynamics of the Web 2.0 ecosystem by analyzing

the data available about mashups and APIs. The first finding was that at the time

of the study services were organized into three tiers, which were 1) the most popular

service (Google Maps), 2) popular services (many services used for social services and

searching), and 3) less popular services (services often used for blogging, online retail,

music, videos, and feeds). The second finding was that mashups are often composed

by combining APIs across tiers. This highlights the central role of the most popular

APIs, but also reveals the importance of less popular APIs in dilution of the ecosys-

tem. Many of the third tier APIs bring together novel combinations of functionality.

Another interesting finding is that in contrast to what has been suggested in [49], there

48

3.2 Three Perspectives on Mashup Ecosystems

is no long tail of services that would form a basis for significant number of mashups.

Instead, Yu and Woodart noticed that 95 % of mashups are build on 20 % of services,

which is much more than in the famous Pareto’s 80-20 rule. Moreover, they noted that

51 % of services were not used by mashups at all. However, one should bear in mind

that Yu’s and Woodard’s data source, ProgrammableWeb, does not list services and

mashups other than that have been added to it by developers. Therefore, there are

services and mashups that are not included in the source data.

Another interesting topic concerns the way mashup ecosystem grows. For instance,

hypothesis in [100] is that mashup developers create new mashups by copying existing

ones. Simulations suggest that this would be true, as it is in line with the reports about

mashup ecosystem growing [99]. However, the hypothesis of [100] has not been tested

empirically.

3.2 Three Perspectives on Mashup Ecosystems

Subsets of the global mashup ecosystem described by Yu and Woodart in [99], i.e.

ecosystems where an ecosystem provider determines the available interfaces, tools, and

platforms that can be used to build mashups, can be considered as well. The ecosystem

provider may be authoring either the services or the mashup, or both. Some ecosystems

allow end-users to create own mashups on top of the ecosystem services, but this is

not always the case. In the following, we describe these smaller mashup ecosystems

from three perspectives of the ecosystem actors: mashup user’s, mashup author’s and

service provider’s. Mashup author’s and service provider’s view on mashup ecosystems

are originally presented in Publication I, and in pursuit of completeness, we present the

view of a user here, as well.

Using a mashup. By definition, mashups have increased value from user’s per-

spective. This value comes from mashup’s ability to access numerous services simul-

taneously and to combine information into a single integrated view [21]. In addition,

some mashups may allow to users contribute content into a service. Consequently,

typical mashup user desires to gain access to a set of services and looks for a suitable

mashup to be executed on a specific device, or, if such option is available, the user can

create a mashup by himself using tools that the ecosystem provides. The services that

are desired to be used can be closely related, for instance when using a mashup that

49

3. MASHUP ECOSYSTEMS

accesses multiple instant messaging services. However, there are numerous examples

of mashups that access completely different types of services and create something un-

expected. For instance, different types of information can be arranged geographically

and attached to a map.

User’s perception of the mashup ecosystem quality is based almost completely on

the look-and-feel of the mashup implementation. This makes user interface issues really

important, as, even if the mashup ecosystem would include well-designed services, a

poorly implemented mashup that is used to access them may drive potential users away.

Authoring a mashup. One motivation of authoring a mashup is providing a

better user experience for users of particular application, for instance a video player

mashup that is capable of using video content from multiple services is more compelling

than one using just single video service’s content. Consequently, to be able to create a

mashup that becomes popular, the ecosystem has to provide access to services that are

desired to be used [101]. In addition, there is a need to gain access to other services

that the users are typically not aware of, but that can be used to create something

unexpected and interesting [102]. Furthermore, accessing these services should be as

convenient as possible, preferably supported by helpful code libraries or application

frameworks.

Moreover, legal issues related to mashup ecosystem are numerous (see http://

blog.programmableweb.com/category/law/). Service terms are often incompatible

and hard to follow in complex mashups. The situation is even more complex when a

mashup is hosted on a third party platform, such as mashup tool provider’s servers.

Mashups can be required to follow some content related limitations as well. For in-

stance, some content can be freely available in U.S. but restricted from accessing in

U.K. Some service providers may restrict their interfaces to be used only on desk-

top and prohibit using them on mobile devices. In addition, libraries and frameworks

used in mashups may have conflicting licenses. Furthermore, protecting a client-side

mashup from copying is often difficult as the executable code needs to be transferred

to the client.

Mashup authors encounter numerous challenges, for instance web service reliability

and complexity of integrating high number of services [21]. Web service reliability can

be addressed by adding fallback mechanisms, but this strategy will make the implemen-

tation more complex. While adding more services to the mashup can be attractive for

50

http://blog.programmableweb.com/category/law/
http://blog.programmableweb.com/category/law/

3.2 Three Perspectives on Mashup Ecosystems

users, it makes the implementation more complex and increases vulnerability to service

breakouts. Furthermore, client-side device capabilities may be limited and operational

expenses can be an issue, especially with mobile devices. These and numerous other

mashup authoring challenges are addressed in Chapter 4.

Providing a service for mashups. The rationale behind offering services for

mashups can be getting a wider audience for certain platform, product, or content ac-

cessed through the service. Moreover, opening a service can lead to numerous clients

created by third party developers to emerge on different platforms for diverse user

needs. Less common are non-free web services that have some specialized, hard to

implement, functionality. Services that are funded with advertisements can push ad-

vertising messages into mashups along with the content.

Service providers support mashup ecosystems in four identifiable levels, which are

originally presented in Publication I. A brief summary of the four levels of support is

given in the following:

1. No support for mashups. Some web content authors do not support mashups

at all and provide their content solely as regular web documents. This kind of

content is still accessible with “screen scraping”, but such accessing is typically

error prone, and it often is illegitimate. Some services even have implemented

technical measures to prevent scraping. Furthermore, even if reusing the content

in mashups would be allowed, the web content author does not have control on

what parts of the content is reused, and it is difficult to build a business model

around such approach towards mashups. In addition, it is likely that accessing

the content is very inefficient and cumbersome from mashup author’s point of

view.

2. Access through a web feed. It is common that regularly updated sites, such

as blogs or news sites, provide their content through RSS, Atom, or other type

of web feed. A web feed is easy to set up and maintain, particularly if a pub-

lishing system is used. The feed is intended mainly for users to subscribe with

a feed reader application, but at the same time the data becomes accessible for

mashups, too. Control over the content is still rather coarse, and use cases of

web feeds are limited to accessing the content as a whole. Utilizing web feeds in

mashups is typically straightforward as helpful libraries and tools for such task

51

3. MASHUP ECOSYSTEMS

are available on most platforms. Some dedicated mashup tools support only web

feeds if content from an arbitrary service is desired to be included into a mashup.

3. Access through a web interface. Providing a service with a web interface,

typically following either REST or RPC architecture style, enables using the

service in mashups. Use cases of such interface allows not just data accessing but

other types of services as well. For instance, a service can provide means for social

communication, authentication, database accessing, or specialized functions such

as reverse geocoding or music identifying. Setting up a web service with REST

or RPC interface requires careful planning and implementation, especially when

sensitive data is handled. However, such system allows fine-grained control over

the content as well as applications using the interface, and it enables different

kinds of business models. Service load can be handled as well by limiting requests

made in a time period, even individually for each application.

4. Access through a programmatic interface. Establishing a programmatic

JavaScript API allows to integrate the service tightly with arbitrary web appli-

cations and mashup ecosystems. Such interface is used by including a JavaScript

library into the application, which makes it possible to use the service with regu-

lar JavaScript function calls. Typically the JavaScript library is downloaded from

the service provider’s server instead of having a copy on the server hosting the

mashup, which makes possible to always use the most recent version of the library.

Setting up a programmatic JavaScript interface requires careful engineering, but

it enables superior control over the content and applications. Diverse business

models are possible, and the content can be provided with different terms and

licenses for individual clients. Considerable downside of the programmatic in-

terfaces is that, because of technical reasons, numerous versions of the interface

need to be provided in parallel. Consequently, bug fixes need to be performed on

all the versions, which makes maintaining the interface more laborious. Another

downside is that if a programmatic interface is desired to be used on other runtime

environments than a web browser, more parallel versions need to be provided.

Authors of [102] point out that when a new service is introduced, it benefits from

having a similar API as existing APIs that could possibly form an ecosystem together

52

3.3 Explicit and Implicit Mashup Ecosystems

with the new service. In addition, authors note that “complementing the existing API,

the new API will also benefit the provider of the existing API by providing additional

contexts of use for the API and increasing its potential share of mashups that use it”

[102]. In other words, when the potential client applications of a service are mashups,

the API design should reflect other services that could be combined with the new

service.

Until recently most of the services have been provided for free, with the exception of

some very specialized services such as image content recognition services. However, in

October 2011 Google announced that the most popular mashup service, Google Maps

API will be provided in two different versions: free and non-free one called Google Maps

for Business. The one with a prize tag provides more advantageous features such as

higher request limitations and technical support. Even thought this is the first example

of this kind of development, it is an interesting change and may be a beginning of new

kind of business model to be common.

3.3 Explicit and Implicit Mashup Ecosystems

Mashup ecosystem does not need to be controlled by a central authority. In contrast, a

mashup ecosystem can be formed implicitly without limitations for services or content

utilized in mashups. For instance, one can build a mashup on top of services freely

available in the Web with liberal enough licenses. In a broad sense, any web document

author can be considered as a service provider, as it is common that content is gath-

ered from web sites by technique called “screen scraping” or “web scraping”, where

the source data is parsed from HTML pages aimed at human readers. The possibility

to create implicit mashup ecosystems makes mashups attractive, as it allows to cre-

ate unforeseen solutions that can even exceed the user’s expectations. Furthermore,

mashup ecosystems can be targeted at specific platforms, for instance mobile devices

with certain operating system. In the following, we summarize our categorization of

mashup ecosystems, originally presented in Publication I.

Mashup ecosystems can be categorized roughly to explicit and implicit ecosystems.

However, an ecosystem having both types of interactions is possible as well. We define

these two types of ecosystems as follows. In an explicit ecosystem it is not possible

to add arbitrary services into a mashup, whereas in an implicit ecosystem adding and

53

3. MASHUP ECOSYSTEMS

removing interfaces is not restricted. In general, explicit mashup ecosystems are based

on specific contracts between ecosystem actors, and implicit ecosystems are formed in

more ad hoc manner.

Commercial and enterprise mashup ecosystems can often be regarded as explicit

[49]. This kind of ecosystems are often closed because of high security, reliability, and

availability requirements. Commercial ecosystems are created to generate profit for

mashup authors or service providers, and to be able to utilize such system in a stabi-

lized business, mashup authors and service providers coordinate and use either specific

contracts or terms of service agreements. Enterprise mashups are typically explicit as

well. Because of enterprise mashups rely more on closed enterprise data sources, the

agreements between service providers and mashup developers can be company’s internal

interface specifications in addition to legislation [103]. In general, explicit ecosystems

typically require more attention on engineering of the implementation as well as legal

matters.

Most other kind of mashup ecosystems can be regarded more or less as implicit.

Often these mashups are targeted at consumers and provided for free, and therefore

the requirements set for such ecosystems are not as high as in commercial or enterprise

setting. In implicit ecosystems even “screen scraping” may be used to gain access to

specific content. The most extreme type of implicit ecosystems are those built around

situational mashups that highly rely on the fact that the target group of users is very

limited [59]. Simple mashups that utilize readily available interfaces can be composed

together rather quickly, and consequently the cost of implementation is relatively low.

This kind of implicit ecosystem may have rather lightweight security, moderation, and

authentication features, and the architecture and other engineering aspects of the mash-

ups may not be the most polished. Implicit mashup ecosystems can emerge swiftly, but

sometimes lifespans of such ecosystems are shorter, too.

Sometimes an ecosystem is build around relatively few central services – often just

one or two – and, in addition to those, it can contain both implicit and explicit inter-

actions with secondary services. If this is the case, the ecosystem often has an inter-

face that can be used to add arbitrary services to the ecosystem. Typically, mashup

tools have such possibilities. For instance, Yahoo! Pipes allows to add arbitrary data

sources and combine the data with predefined services that are supported by the tool.

54

3.4 Implementing Mashup Ecosystems

Another example of a system including explicit and implicit parts is Google Maps ser-

vice, where support for Weather Channel (http://www.weather.com/) and Panoramio

(http://www.panoramio.com/) services is in-built with the map service, and arbitrary

services can be included into the ecosystem without restrictions with JavaScript pro-

gramming.

3.4 Implementing Mashup Ecosystems

Mashup ecosystem implementations are highly dependent on the application domain.

For instance, an open ecosystem targeted at desktop clients forms a very different kind

of ecosystem compared to a closed one targeted at mobile devices. In addition to

choosing whether or not the ecosystem is expandable with arbitrary services, and what

kind of devices it will be used on, one has to determine numerous other details as well.

For instance, security and issues related to legislation are typically areas where attention

is needed. Another fundamental decision is whether to implemented mashup logic on

the server-side or the client-side. In the following, we summarize these considerations,

originally presented in Publications I, II, and III.

Services in a mashup ecosystem need to provide clearly defined interfaces for mash-

ups to utilize. The interfaces should be standardized web interfaces or programmatic

JavaScript libraries to allow different actors to implement compatible subsystems.

When services are implemented, portability needs to be taken into account. For in-

stance, while web interfaces following REST or RPC style can be typically used on

most web enabled application environments, programmatic JavaScript APIs may be

targeted at specific runtime environments.

Security of services provided in a mashup ecosystem should be considered carefully.

Security model should be liberating enough to allow access to different services and

user’s data but eliminate possibility to misuse the system. The model should be easy

to understand and implement without adding unnecessary complexity to mashup de-

velopment. There are numerous existing systems for user authentication, for instance

OAuth [104] is a widely used open service for secure interface authentication. In addi-

tion, there are numerous research efforts that try to solve mashup authentication issues

(see [105, 106, 107]), but applying them still requires careful evaluation.

55

http://www.weather.com/
http://www.panoramio.com/

3. MASHUP ECOSYSTEMS

Legislation is another fundamental challenge of mashup ecosystems. Often the

content in mashups is created by different third parties and accessed through services

with varying terms and licenses. Content within a service might be provided with

different licenses, for instance Flickr image hosting service API can be used to access

both images marked with a Creative Commons license and with “all rights reserved”

notices. In addition, some services are provided with stricter terms when used in

commercial purposes. For instance, a separate agreement and charges may be applied

when a service is used in commercial setting, even when the same service is provided

for free for non-commercial use.

Targeting a mashup ecosystem for mobile devices sets restrictions for the client-

side mashup implementation and may affect on service implementation as well, as

explained in Publications II and IV. The impact on the client-side is more significant,

as mobile devices do not necessarily have the same runtime environments available for

mashups as desktop systems, and sometimes separate versions of the mashup need to

be implemented for mobile devices with different operating systems. In addition, rich

mashups typically require a reliable network connection, which is not always available

in mobile devices. Therefore, support for offline operation is sometimes included into

the mashup. Furthermore, the user of mobile mashup ecosystem is typically required

to have an unlimited data plan to avoid unexpected operational expenses.

As described in Section 2.3, mashups can be implemented as client- or server-side

applications, depending on where handling and combining of the content takes place.

Mashup ecosystems can be built around both types of mashups. In addition, a hybrid

model, which combines both approaches, is possible. For instance, a mashup ecosystem

can consist of a server-side implementation that aggregates different services, and client-

side mashup that utilizes this aggregator server.

In addition to issues mentioned above, mashup ecosystems face also other difficul-

ties, such as addressability of mashup ecosystem endpoints as well as transparency and

protocol support of the network used. Before IPv6 [108] gains ground it might be nec-

essary to use higher level methods to address network endpoints. Addressing mashup

clients and services in too high level can derive scalability and performance issues. An-

other problem is caused by non-transparent network nodes that may cause some parts

of the ecosystem become unattainable. Furthermore, lack of protocol support for other

than HTTP can cause video and audio streams fail to operate, for instance.

56

3.5 Example Implementation

3.5 Example Implementation

To provide a hands-on view of the topic, we briefly describe an implementation of

a mobile multimedia mashup ecosystem originally presented in Publication III. The

goal of the ecosystem is ambitious. It targets at enabling liberal mashupping of all

relevant web content available in the most popular Web 2.0 multimedia services as well

as user’s own local area network. The architecture is designed to hide service interface

complexity and to enable coherent user experience across services. It should be possible

to access the mashup content with different mobile client devices including ones with

limited capabilities. The client-side mashup should take user preferences, interpreted

on the basis of past actions, into account and automatically adapt to user needs.

In order to address the ecosystem design goals described above, we have chosen to

follow a hybrid approach that consists of server- and client-side parts. The architecture

is presented in Figure 3.2, where the server-side is referred to as Mashup Aggrega-

tor Server and the client-side mashup implementation as Mashup Client. This hybrid

approach enables to run the mashup even on devices which do not support all multi-

media technologies. For instance, most of the video content in the Web is available in

Flash video format (http://www.adobe.com/devnet/f4v.html), which is supported

poorly in some mobile devices. Furthermore, clients that are able to take user context

into account can be implemented using our approach without need for extensive data

transferring with the server.

Figure 3.2: Example architecture of a mashup ecosystem. The figure is simplified from
the one appearing originally in Publication III.

57

http://www.adobe.com/devnet/f4v.html

3. MASHUP ECOSYSTEMS

The Mashup Aggregator Server is implemented as a cloud service. It provides a uni-

form interface that client-side mashups can use to present videos from multiple sources.

The aggregator server provides mechanisms for searching content across services and

authenticating users. The backend provides content with different qualities to ensure

that devices with low bandwidth network connection can access it. In addition, it con-

nects to different social networking services and can publish public content in those,

too.

The Mashup Client, installed into user’s mobile terminal, composes the mashup from

content items. It communicates with the aggregator server and gains access directly to

the web content. In addition to aggregated content, it can browse content from local

servers and use it as well. The third source of content are servers in other domains,

provided that the Mashup Aggregator Server has necessary information about them.

Naturally, if the client has access to local filesystem, local files can be used. If a network

connection is not available, the mashup can use only local video content. In the current

implementation the client can use any DLNA compatible renderer to play mashupped

videos. The client is targeted at mobile devices with Android operating system, and it

is programmed with Java.

Interfaces. The ecosystem interface between the aggregator server and mashup

clients relies loosely on REST principles [61], and it could be categorized as a REST-

RPC hybrid architecture [60]. The interface supports data exchange in both XML

and JSON formats, and the format can be selected in the client implementation. This

is convenient as parsers for XML are often readily available in runtime environments.

However, using data-oriented JSON has certain advantages in contrast to XML which is

more document-oriented. One benefit that JSON has is smaller data exchange overhead.

Security. Mashup ecosystem security is based on requiring authentication for

clients invariably when a request is made to the aggregator server. We used HTTP

digest access authentication [109], which is relatively light-weight solution. This au-

thentication method is less secure when compared to strong authentication protocols

such as public-key [110] or Kerberos [111]. However, it is more secure than traditional

digest authentication schemes such as basic access authentication [109] or CRAM-MD5

[112]. Digest authentication encrypts user’s password and leaves content of a message

uncrypted, unlike stronger protocols, which encrypt also the content of the message.

This is sufficient solution in basic functionality, which does not require information

58

3.5 Example Implementation

about the user. However, when sensitive data is transferred between the client and

servers, stronger security mechanisms are necessary to be implemented, as while the

HTTP digest access authentication provides a way to negotiate credentials, it does not

provide a secure channel to transfer data.

59

3. MASHUP ECOSYSTEMS

60

4

Composing Mashups

In this Chapter, we present numerous practical considerations that mashup developers

need to take into account. These include architecture, general design principles, inter-

facing with web and local services, considerations about mashups on mobile devices,

and security. Sometimes different kinds of tools targeted at end-users are proposed

to make mashup composing easier. Our staring point, however, is that mashups are

created without such special purpose tools that often limit the mashup developer’s

possibilities. Instead, we discuss about how traditional web development tools, meth-

ods, and practices can be applied to client-side mashup development along with special

web runtime environments, which may be necessary in certain situations where using

a regular web browser is not possible.

Mashups can be constructed in numerous ways with a plethora of tools, and there

still are major practical problems related to mashup composing and security. For in-

stance, tools introduced are lacking behind, using dynamic languages for large applica-

tions is an unknown territory for many developers, and the web browser security model

is too restricting for mashups. The field of web programming is constantly changing

as new interfaces, technologies, and frameworks build upon novel technologies emerge.

The amount of different, constantly evolving APIs with different legal terms is over-

whelming. When developing large-scale mashups utilizing numerous web services, the

situation turns out even more problematic. Some of the issues are common for both

mobile and desktop environment, but naturally mobile mashups have their own specific

things to handle as well.

While implementing client-side mashups on mobile terminals sets restrictions on

applications and application development, it is a great opportunity from mashup de-

61

4. COMPOSING MASHUPS

velopment point of view. The dynamic nature of mashups suits well for different ways

mobile terminals can be used. Often, the information needed on the fly is related

to the user’s context, which can be available for applications to access automatically.

This opens up opportunities to provide advantageous user experiences, as mashups can

dynamically present eligible information – possibly even automatically without requir-

ing specific user action. However, as mobile device capabilities are limited, extending

mashups to mobile domain is not trivial, and special solutions are sometimes necessary.

There are situations when composition of a mashup is not possible without use

of native code. For example, applications that require a lot of computation power or

access to interfaces that are not available for dynamic code have to be constructed

with both dynamic and native code. Therefore, offering an interface for mixing web

technologies with the capabilities of native software components is sometimes necessary.

On the other hand, utilizing hybrid technology allows one to combine the best of both

worlds: performance and eye candy of traditional, installed binary applications and

pervasiveness and seemingly infinite resources of the Web.

Because of issues and opportunities described above, we first provide an overview

about the current state of the art in mashup development. Then we describe how to

solve problems related to client-side mashup development in desktop and in mobile

devices. We address the research question RQ2 by introducing a reference architecture

and a set of general guidelines for mashup development. In addition, we describe two

runtime environments that can be used to enable context-aware mashups on embedded

devices and point out some considerations about mashups on mobile devices. Finally,

we discuss about mashup security, which has a very important role in mashup com-

posing, even though the topic is not addressed in the included Publications. While

the background Section and the discussion about mashup security are based on the

literature, other Sections are based on our findings described in Publications IV, V,

and VI, if not stated otherwise.

4.1 Background and Related Work

Mashup design has been considered opportunistic activity where methods described as

“hacking, mashing and gluing” have been used [113]. However, following established

software engineering principles in mashup composing is vital for maintainability and

62

4.1 Background and Related Work

modifiability, as pointed out in [52, 114]. In addition, ability to reuse mashup compo-

nents requires a well-engineered architecture and careful implementation, as described

in [55] and [115].

Composing mashups is different from developing conventional software as pointed

out in [16, 45, 116] and summarized in the following.

• Mashup development focuses on reusing the content, not the implementation.

There are numerous widely accepted standards for formatting the content, which

makes reusing it in mashups possible. However, reusing mashup implementation

– or any other web application’s implementation – in another context is difficult.

Some mashups manage to reuse the visual representation of sites at least partially

(e.g. map component), but in others, only the content is reused.

• Mashups are more dynamic than conventional compiled binary software in the

sense of accessing content of different types. Because mashups access content

that often changes using dynamic interfaces, they can not be built easily using

static programming languages with advance compilation and static type checking,

as pointed out in [116].

• Mashup developers often do not have formal training or background in software

engineering. Those developing mashups may have some kind of media or data

mining background. This is another reason, why mashup implementations typi-

cally focus on content rather than implementation techniques.

• Because of using the Web as a platform that has great distribution and shar-

ing power, it is easy to implement mashups where reusing content happens in

unforeseen scale. In principle, anything that is released to the Web is instantly

available for anybody anywhere in the world without limits. Therefore, the party

that made a piece of content available may not be aware that it is used in other

context as well.

Even though mashup desigers have common goals, architecting mashups is often

done by trial-and-error or intuitively. There are few guidelines for developers on mashup

architectures, and the design of mashups is regarded as ad hoc acitivity [113]. Moreover,

current approaches to mashup development are tool oriented and disregard software

engineering principles, such as decomposition and modifiability [16, 45].

63

4. COMPOSING MASHUPS

Server-side enterprise mashup architecture has been studied by Lopez et al. [117].

Their architecture consists of four layers: source access, data mashup, widgets, and

widget assembly. In addition, the architecture includes common services, which provides

general functionalities and can be used from any layer. The result mashup developed

using this architecture is somewhat similar to a web portal with the exception that the

widgets are connected.

In [118] Bader et al. identify numerous security aspects of enterprise mashup ar-

chitectures. They point out that mashups handling sensitive data of an organization,

should store data strictly on organization’s own storage services as using an external

storage service in a cloud might cause unwanted information disclosure. One should

bear in mind that even non-sensitive data can expose delicate information when aggre-

gated. Moreover, mashup robustness and stability are especially important in an en-

terprise setting. Therefore, SOA-based approach to creating mashups is recommended.

Downside of SOA-based approach is complexity for unexperienced users that may not

be able to build mashups on top of a complex SOA stack. Trustworthiness of mashups

is significant as well, when they are used in a business setting. Unfortunately, when

mashups utilize external web resources, confirming resource trustworthiness is typi-

cally difficult or even impossible. Therefore, authors of [118] suggest utilizing a central

service governance, which would control services that are used through mashups. Fur-

thermore, when mashups are used to access organization’s private data, authentication

of mashup users and restricting unauthorized users from accessing sensitive data is

vital.

4.2 Designing Mashup Architecture

ISO/IEC/IEEE 42010 standard for architecture descriptions gives the following def-

inition: “Architecture is the fundamental organization of a system embodied in its

components, their relationships to each other, and to the environment, and the princi-

ples guiding its design and evolution” [119]. Software architecture can include numerous

views describing different levels of abstraction of the sofware. Following a reference ar-

chitecture in client-side mashup composing will result in flexible implementations that

are still straightforward to maintain. In the following we first identify mashup architec-

ture requirements and then describe our reference architecture for mashups. The topic

64

4.2 Designing Mashup Architecture

is discussed in more detail in Publication VI including the descriptions about mashup

implementations that our research is based on.

4.2.1 Mashup Architecture Requirements

Architecture requirements for mashups can be derived from common goals of different

mashup systems. Mashups are build on top of independent services and aim at provid-

ing superior user experience while preserving quality attributes, such as performance

and modifiability. In addition, choosing the right architecture model for a mashup

is vital for security. If a mashup has access to user’s private data, but utilizes un-

trusted dynamic code or content as well, providing architecture level security features

is important.

Content accessing. Service interfacing is an integral part of mashup architec-

ture. Mashups are vulnerable to changes in interfaces, and mashup architecture should

support either automatic or manual reacting when such changes occur [45]. Further-

more, the overlapping nature of the Web provides an interesting challenge for mashup

architecture. It is common that several web services provide roughly the same func-

tionality. There are, for instance, numerous mapping services – Google Maps, Yahoo!

Maps, Bing Maps and OpenStreetMap, for instance – that could be used to create a

map component within a mashup. Unfortunately legal terms, availability of services,

features of services, and response times differ accross services, which makes creating an

architecture that allows interchangeability of services more difficult.

Data handling, converting and exchanging. Data handling, converting, and

exchanging are typically a central part in mashups, because of data downloaded from

different services is inevitably in diverse formats [16, 45]. Before data can be mashed

up, it needs to be converted into a common format that is straightforward, if possible,

for the application to handle. This is important to be able to create a flexibility adding

abstraction layer between services that are used and the mashup composition functions.

While this is true when established web serviced are accessed through well-documented

interfaces, it is especially vital when a mashup extracts source data from an HTML

page, where the data scraping and parsing is extremely error-prone if the source HTML

page changes.

Mashup creation. Application logic is the processing that actually creates the

mashup [21]. It utilizes the data that has been converted into a common format and

65

4. COMPOSING MASHUPS

combines it in novel fashion. How the logic is determined is sometimes dependent on

the tools that are used. For instance, with some tools, such as Yahoo! Pipes, the

composition is generated graphically. If the mashup is created manually, the appli-

cation logic is typically determined using JavaScript or other dynamic language, and

implemented by writing a suitable program code.

Creating user interface. User interaction is included in practically all web ap-

plications targeted at end-users, and mashups are not an exception. User interface

implementation should be separated from the implementation for numerous reasons

[120, 121]. For instance, this allows the widget set to be changed to another according

to target device type. In addition, need for internationalization as well as customization

of the user interface motivates separating it into an independent module. However, in

some cases the underlying service may restrict the user interface implementation, map-

based applications being a classic example of such construction.

4.2.2 Reference Architecture for Mashups

In the following, we summarize the reference architecture for client-side mashups, which

has been described in detail in Publication VI. The reference architecture (see Figure

4.1) can be used as a fundamendal structure when composing client-side mashups using

manual development methods. Naturally, in practical implementations, some compo-

nents of the reference architecture can be merged with others or omitted completely.

We describe the reference architecture modules in the following.

Content providers. Content providers are interfacing modules that access web

service interfaces, local files, or device peripherals to retrieve content for the mashup.

These interfacing capabilities are, by definition, an integral part of any mashup applica-

tion, even though they are not part of mashup architecture per se. Accessing content,

whether it is available in the device itself or already existing in the Web, is carried

out by content provider modules that can be easily modified, replaced, or removed as

standalone components.

Context extractors and formatters. Data model of the mashup reference ar-

chitecture consists of content extractors and content formatters. These two types of

components acquire, manage, and maintain the data that is used by other modules of

the mashup. Data model includes operations that accesses the required data and ex-

tracts it from different sources by utilizing content providers. Furthermore, data model

66

4.2 Designing Mashup Architecture

Figure 4.1: Mashup reference architecture.

includes functionalities, i.e. content formatters, to alter the data by parsing, filtering,

and converting it. These functionalities can be composed together in layered fashion.

Furthermore, data model of a mashup can maintain local cache or database where the

data is stored for faster accessing or offline use.

Mashup logic. In order to compose a mashup, a module referred to as mashup

logic draws the content together and performs the actual mashup related functions.

Different mashups may be built on the same content providers, extractors, and format-

ters, while the result is different as the mashup logic is unique. Naturally, methods

used to determine the mashup logic may depend on the tools used and environment

where the mashup is created. In most systems the logic is described in program code,

but in others, a graphical tool is used to generate the logic.

User interface. Implementing mashup’s user interface as a separate module has

evident benefits. Most mashup designs rely on an existing set of user interface widgets,

67

4. COMPOSING MASHUPS

and often it is desirable that replacing a set with another is straightforward. Depending

on the selected widget framework, it may be necessary to merge mashup logic partially

with the user interface, as in some widget libraries the data is binded with the graphical

presentation. In some cases the result mashup may even be rendered on completely

different device, such as a TV set or a public display, for instance.

Mashup manager. To overcome the fragile nature of mashups, a mashup man-

ager is included into the architecture. It is capable of making updates to other mashup

components, for instance to content providers when service providers change their inter-

faces. In addition, mashup manager is responsible of changing a component completely

into another, as is benefical when some part of the mashup is failing and a fall-back

module is available and ready to be taken in use. Furthermore, mashup manager can

make operations that affect more than one mashup component. For instance, it can

determine whether the mashup should work on online or offline mode.

4.3 General Design Principles

In the following we point out considerations that should be taken into account as general

design principles when composing mashups. These considerations are explained further

in Publication VI along with the example mashup implementations that our findings

are based on.

Design applications according to software engineering principles. When

designing mashups, adhere to established software engineering principles, and follow

an architecture that takes special features of mashup development into account. For

instance, our mashup reference architecture that can be used as a starting point is de-

scribed in Section 4.2. Utilizing suitable JavaScript libraries benefits mashup authoring

with traditional web development methods. Such libraries are available for JSON and

XML parsing as well as for making requests over the Web. In addition, libraries are

useful for creating user interfaces or enhancing cross-platform compatibility between

different web browsers. However, selecting suitable libraries should be done carefully.

Sometimes the selection has side effects on selected application architecture model, for

instance some libraries suit better for 3-tier architecture [122] and others for MVC

model [123, 124]. Typical further issue is that libraries are often incompatible, or have

incompatible libraries that they depend on.

68

4.3 General Design Principles

Follow standards and recommendations. Following standards and recommen-

dations on mashup implementation improves changes to develop mashups that are easy

to maintain. Open standards, established data formats, such as JSON, RSS, and XML,

are less likely to change over time than proprietary standards and formats. In addition,

following recommendations regarding JavaScript programming such as guidelines, pat-

terns, and best practices (see [125, 126]), can improve quality, security, and performance

of a mashup implementation.

Consider using quality evaluation frameworks. Quality evaluation can be

done with suitable frameworks. For instance, Cappiello et al. have evaluated mashup

components and data used in mashups from quality point of view in [127] and [128].

They have introduced a quality model that can be used when evaluating quality of in-

terfaces, libraries, and data used in a mashup. In addition to tangible quality measures,

stability of mashup components should not be overlooked either.

Test carefully. Careful testing is essential when developing dynamic JavaScript

applications [129]. Tests should be done with a weak network connection and in the

offline mode, too. Tools and libraries make testing easier (see, for instance, tools intro-

duced in [129, 130], and Selenium, http://seleniumhq.org/, as well as JSLint [125],

http://www.jslint.com/). Unit testing is possible with special purpose JavaScript

libraries and well designed debugging tools are built-in web browsers or available as

extensions [131]. Testing should be done with different browsers and browser versions.

If a mashup is built on experimental technologies, support for these technologies may

be discontinued or changed when browser version changes. As some browsers update

automatically, such mashups may stop working unexpectedly.

Be visually impressive and keep usability in mind. Combine data and other

content in an innovative, visually impressive way. Use innovative data visualization

techniques to help the user to handle complex information (see [132] for qualitative

study about mashups). Most users “see only what they see”, and their perception of

quality is based on attractiveness of the interface they see [133, 134]. Therefore, user

interface issues are really important. In addition to look-and-feel of the user interface,

user experience of a mashup has other aspects as well as described in [132]. For instance,

taking user context into account in the implementation, and using it to provide relevant

information, can be a great benefit. Edward Tuftes books on data visualization (e.g.,

[135]) can serve as a helpful starting point.

69

http://seleniumhq.org/
http://www.jslint.com/

4. COMPOSING MASHUPS

4.4 Accessing Web Services

Issues that are faced when using technologies available in web browser to access web

services include interface changes, timing problems, as well as lack of documentation,

tutorials, and examples among other difficulties that make the implementation of mash-

ups more cumbersome. These issues are explained further in Publications IV and VI,

and the following remarks are based on our own experiences in developing mashups

mentioned in these publications.

Changes in interfaces are naturally difficult for mashups to handle automatically.

Typically changes are more common in new service interfaces that are in their beta

or alpha stages, in contrast to established services. However, changes can occur even

in established services and, therefore, a flexible model to access services is necessary

to be able to reflect such changes [136, 137]. Utilizing open services and wikis as

resource providers for a mashup decreases dependence on single service providers and

is therefore worth considering. Community provided data should be used carefully,

though, as accuracy of the information provided is not always sure. Some services,

such as Google Maps, have enabled accessing their services with old versions of the

interface as well. This is achieved by determining the exact version number of the

JavaScript API in the request URL.

“Screen scraping” or “web scraping” – in other words, parsing source data from

HTML pages aimed at human readers – should be avoided altogether. Using such

approach to obtain data may seem tempting, because of it enables accessing desired

data that is not available through proper web interfaces [113]. Many services, however,

deny accessing their content in such manner with a legal disclaimer. In addition to

legal issues of using screen scraping for harvesting content, this technique is especially

prone to failing when changes occur in the representation of the service. Furthermore,

some web services have implemented technical measures in order to prevent scraping.

Adapting new technologies and services is often risky in terms of stability and

maintenance. Documentation and tutorials of new frameworks and interfaces may

be nonexistent or obsolete. Sometimes only examples are provided to developers to

explore. These factors slow the development down and make it more difficult. In

addition, experimental interfaces may be discontinued, causing a need to reimplement

the mashup.

70

4.4 Accessing Web Services

Building the mashup in manner that is easy to modify when changes occur is benef-

ical. Anticipating changes includes possibility to change a resource interface to another

providing similar service as the original [137]. Therefore, binding the application mod-

ules too tightly with a certain data format or accessing method should be avoided.

Instead, layered architecture and loose coupling with services should be used to enable

modifiability, especially when building on experimental services.

Fall-back mechanisms can be built in order to ensure mashup functionality in de-

graded level when a service becomes unreachable. For instance, a mashup using in-

formation about user’s location can revert to IP-based or manually entered location

if GPS data is not available. Another example of such fall-back mechanism would be

utilizing services with different quality for reverse geocoding, where an address or a

place name is resolved from a point location, i.e. latitude and longitude values. In

some cases a mashup may even be able to adapt on the fly by changing a service to

another providing roughly equal functionality. For instance, a map component can be

aquired from numerous overlapping services. Moreover, caching the data locally may

provide a way to ensure undisturbed mashup operation.

Adding mechanisms that alert the mashup developers when a service is failing is

one way to prepare for changes in interfaces. However, adding such mechanisms usually

requires some user collaboration, especially if the application is sending some informa-

tion that could be used to identify the user. Using error handling constructs of the

chosen implementation language, like try...catch statements in JavaScript, is strongly

encouraged, as mashups are more likely to suffer from unexpected errors in contrast to

traditional web applications.

Some runtime environments that can be used as mashup platforms do not implement

all HTTP methods [62]. This leads to difficulties when using an interface that applies

unavailable methods. For instance, Google Calendar API utilizes GET, POST, PUT,

DELETE, and PATCH [138] methods, and common functions such as deleting an event

is not possible if DELETE method can not be used. Examples of platforms that lack

support for some methods include Adobe’s Flash, Oracle’s Java ME (http://www.

oracle.com/technetwork/java/javame/index.html), and Digia’s Qt Quick (http:

//qt.digia.com/Product/qt-quick/). In addition, HTML 4.01 specification [3] does

not support PUT and DELETE in form elements. The support was added to HTML5

specification [11], but removed later.

71

http://www.oracle.com/technetwork/java/javame/index.html
http://www.oracle.com/technetwork/java/javame/index.html
http://qt.digia.com/Product/qt-quick/
http://qt.digia.com/Product/qt-quick/

4. COMPOSING MASHUPS

It is common that service interfaces require using an API key to identify either ap-

plications or developers, and to separate commercial and non-commercial applications.

API key is a distinctive character string that is included into all requests made to the

service. In the early days, services supported only server-side applications, and API

keys were connected to certain URLs or domains. Today, services may provide both

server- and client-side keys for different types of application as client-side keys can not

always be attached to specific URLs or domains.

Accessing asynchronous web interfaces may lead to timing issues as well. Depending

on the perfomance of the service, network connection, and other factors, response

times to resource requests vary, and this can lead to problems if the mashup is not

implemented carefully.

4.5 Accessing Local Services

Web applications can be executed on embedded devices, and especially on mobile de-

vices that have been the forerunners in this field for obvious reasons. Moreover, network

connectivity has been utilized in game consoles, set top boxes, and smart home devices,

among others, to provide possibility to access different web services or to enable acces-

sibility from the Internet. In embedded devices the network connectivity has been used

for delivering software updates, providing a remote accessing through a web server,

and enabling web browsing. In addition, connectivity has been utilized in multi-player

games. Consequently, typical examples of applications utilizing the Web in embedded

systems are either static binary ones, where the role of the Web is to provide means

of sending and receiving data, or those presenting dynamic content in the form of web

pages.

In addition to these use cases, implementing mashups on embedded devices is pos-

sible as well. Mashups can mix web technologies with the capabilities of web enabled

embedded devices and be able to novel experience for embedded device users. This is

possible when mashups combine device’s local resources such as local files and sensor

data with seemingly infinite resources of the Web.

Approach of this kind requires, however, a special runtime environment. Accessing

local services in tandem with web services can be achieved with two methods that

are different from mashup developer’s point of view. The former method requires

72

4.6 Considerations of Mashups on Mobile Devices

a customized web browser or a runtime, while the latter one can be used with web

applications that use a regular browser as a runtime environment.

The first method is implementing a special purpose native runtime that exposes lo-

cal data to dynamic mashup code via bindings that are either generated automatically

or implemented manually. The local data may be accessed through native subsystem

providing peripheral data (e.g. D-BUS [139]) or directly through a proprietary scripting

interface. In Publication V we have described in detail two runtime environments – one

supporting procedural programming and another supporting declarative programming

– that can be used as a mashup platform. Besides different approach for programming,

accessing device sensors is implemented in different fashion in these two environments.

The declarative environment provides a proprietary interface and the procedural one

uses device’s subsystems for accessing peripheral data. When peripheral data is ac-

cessed in this way, it is typically in a format that is completely different from what web

interfaces provide, and converting data into another format is almost always necessary.

For instance, GPS sensor data accessed through D-BUS interface is usually NMEA-

0183 formatted, and converting it into XML or JSON format, which are easy to handle

with JavaScript, requires a special purpose parser to be implemented.

The second method is to use a local server that exposes the data over a web in-

terface that can be used with asynchronous requests in similar manner as any other

web interface. When a native component with a local web server is used to provide

peripheral data, such conversion is not necessary in the mashup implementation. Fur-

ther advantange gained with this approach is better cross-platform compatibility of the

mashup implementation, provided that the local server is available, as now the mashup

can be executed on a regular web browser. Moreover, changing source data provider

into another, for instance in a fall-back recovery situation, is more straightforward when

the interfaces are similar.

4.6 Considerations of Mashups on Mobile Devices

Mashups on mobile devices can be developed using the same tools and methods that

are used to create their desktop counterparts if they are targeted at a runtime platform

that is available across environments. However, our experiences – further described in

Publications II, III, IV, and V – raised issues because of differencies between desktop

73

4. COMPOSING MASHUPS

and mobile systems in runtime platforms available, network connection technologies,

energy consumption restrictions, operational expenses, and possibilities for accessing

user’s context. Brief summary of our findings is provided in the following.

Cross-platform compatibility. In general, mashup cross-platform compatibility

relies on underlying software platforms. For instance, mashups built on web browsers

have the same functionality across operating systems where the browser is available.

Similar compatibility can be achieved using other runtime environments such as Adobe

Air (http://www.adobe.com/products/air.html) or Qt (http://qt.digia.com/).

However, this is true only on desktop and on mobile devices the situation is more

difficult. The mobile device browsers are usually lacking behind their desktop coun-

terparts in functionality. Updating a pre-installed web browser on a mobile device

usually happens only when the manufacturer releases a new version of the operating

system, and consequently it takes time for the latest features to become available. Even

browsers based on the same browser engine do not necessarily have the same capabilities

on devices from different manufacturers or with differrent operating system versions.

Therefore, using an application framefork that has support for desired platforms to

hide differencies in details as well as designing for the lowest common denominator is

often necessary.

Need for constant access to the network. Network access with a mobile

device is typically not as reliable and high quality as we are used to on desktop en-

vironment. Available bandwidth and latencies may change significantly depending on

different factors such as the current cellular connection type and simultaneous traf-

fic caused by other users in the network. This can have an effect on mashups run

on mobile devices and should be taken into account at the design time. This can be

done by caching, compressing the data to be transferred, or using a server-side mashup

approach where most of the content retrieving can be done on the server. In addi-

tion, if it is possible, attention should be paid on interface design so that it is possible

to transfer only that data which is needed at the moment, in other words, overhead

needs to be weeded out. For instance, when information about one user’s status is

needed in the application, it would be wasteful to load the entire user database. In

some cases the problem of frequent web communication arises from a need to actively

poll a web interface in some specific intervals to get notifications for new content.

This can be avoided with techniques that eliminate the need for active polling. These

74

http://www.adobe.com/products/air.html
http://qt.digia.com/

4.6 Considerations of Mashups on Mobile Devices

techniques, commonly referred to as server push, include Comet [140], JSONRequest

object (http://www.json.org/JSONRequest.html) as well as Bayeux [141] and BOSH

(Bidirectional-streams Over Synchronous HTTP) [142] protocols. Furthermore, Server-

Sent Events and WebSockets, both introduced in a draft of HTML5 specification [11],

can be used. However, to be able to utilize this kind of techniques, an interface needs

to support one, which often is not the case. Further, if the server pushes new data to

the mobile device in very short intervals, the situation is not different from using active

polling in sense of need for constant networking.

Battery consumption. Rich mashups may drain mobile device’s battery quickly

as they frequently communicate over network and typically have a graphical user inter-

face that is used to display the results. These problems are the same with most mobile

web applications, but in the case of mashups the web communication can play even

bigger role. Any application that forces the mobile device to be immobilized for loading

the battery in the middle of a working day is most likely unsuccessful, and therefore

this aspect of a mashup requires attention.

User operational expenses. There are numerous types of service plans for a

mobile internet connection, for instance: pay-per-use, unlimited data plan, limited

data plan with additional data charge for exceeding the limit, and tiered data plan

where the price goes up in gradual increases. Because of capacity issues, the trend

has currently been moving out from unlimited data plans into other types of plans

where the data has a price tag. Even though this issue is not only a concern of a

mashup developer, but other parties as well, it has an effect on mashups, as they

are depending on web accessing capability of the mobile device. Rich mashups with

multimedia content are definitely large-scale consumers of mobile data, and currently

the cellular operator’s business model is not fully compatible with unlimited use of this

kind of applications. Many other types of applications, such as streaming audio and

video players, are affected as well, and we will propably see new kind of business models

that enable the full-scale use of this kind of services.

Access to context. Possibility to access user’s context is a great advantage for

mobile mashups [143]. Achieving this requires access to device sensors, which is not

always straightforward. In general, sensor data is not available for applications running

inside a browser, with the exception of location, which is available, if the browser

implements W3C’s Geolocation API [144]. However, in addition to location, there

75

http://www.json.org/JSONRequest.html

4. COMPOSING MASHUPS

are numerous other sensors that could be utilized is mashups as well. Luckily, new

APIs for accessing sensors and internal services of devices have been developed for

instance by W3C’s Device APIs Working Group (http://www.w3.org/2009/dap/).

Some device manufacturers have already opened access to mobile device sensors with

more or less standardized interfaces. For instance, Apple has implemented W3C’s

DeviceOrientation Event specification [145] in mobile version of Safari browser, and

this enables utilizing device’s accelerometer and gyroscope sensors in web applications.

4.7 Security

Security is a major issue with mashups, where loading arbitrary content from poten-

tially distrusted sources opens up an opportunity for attack. Mashup security can

be improved if certain practices are followed when mashups are designed, and this

topic has been subject for numerous researchers as well. Different models to solve

mashup security problems have been proposed as we described in Section 2.5.3 (see

also [106, 146], which have been introduced more thoroughly in Publication II, as well

as [147, 148, 149]). In this Section, based on literature, we provide an overview of

mashup attack scenarios and security practices.

4.7.1 Attack Scenarios

Mashups can be attacked against with the same methods that can be used against

any other web applications. In addition, because of the dynamic nature of mashups,

they can be more prone for certain types of attacks. Therefore, accessing multiple data

sources needs to be done carefully to avoid security problems. Three attack scenarios

considered relevant to mashup development in [94, 150, 151] are cross-site scripting,

cross-site request forgery, and JSON hijacking. In the following we provide a brief

summary of the scenarios.

Cross-Site Scripting (XSS). XSS is one of the most common application level

attacks [152, 153]. XSS attacks are based on injecting distrusted content into a dynamic

page. This can be done for instance by exploiting unsanitized HTML form input or

HTTP query parameters. With XSS, every input is a potential attack vector. If

the data provided by the attacker is saved by the server, malicious scripts can be

later executed automatically, which makes it more difficult to notice the attack. XSS

76

http://www.w3.org/2009/dap/

4.7 Security

attacks can be used for hijacking user sessions, defacing websites, and injecting worms

into user’s computer, among others.

Cross-Site Request Forgery (CSRF). CSRF utilizes a malicious site that in-

structs a victim’s browser to interact with an honest web site. Consequently, CSRF

leverages victim’s network connectivity and browser state while disrupting the victim’s

session with the honest site [154]. The attack can be executed, for instance, by includ-

ing a link or script that makes the user’s browser to access a site by which the user

is known and authenticated. If the authentication has not been expired, the attacker

may be able to successfully perform operations on the honest site by using victim’s

credentials [155].

JSON Hijacking. JSON hijacking (or JavaScript hijacking) is a special type

of CSRF attack, and it refers to a technique that can be used to attack JavaScript

application with malicious JSON formatted data [156]. JSON formatted data can

hold JavaScript function calls, and if the unsanitized JSON data is converted to a

JavaScript object with unsecure eval() function, these function calls can be used to

override standard JavaScript object constructor functions in order to gain access to

victim’s sensitive data. This is possible as the same origin policy does not prevent

including JavaScript from one web site and executing it in other web site’s context.

While CSRF is normally a blind attack (the attacker can not see what the honest web

site sends back to the victim in response to the forged requests), CSRF against JSON

calls allows the attacker to see JSON responses sent by the honest web site.

4.7.2 Security Practices

There are a number of practices that, when followed, can increase mashup security

remarkably. Authors of [94] suggest developers to focus on protecting their applications

against XSS and CSRF attacks.

Check input values. Input value checking is necessary to prevent XSS attacks,

and it should be implemented on both client as well as server-end regardless whether

a web browser is used as runtime environment or not [94]. Input value checking can

be done by sanitizing the inputs from all possible malicious content by filtering it with

either whitelist or blacklist technique [150]. Another way to improve security is to

escape special characters in input strings [150]. In mashups, input sanitization should

be applied to resources retrieved through web interfaces, as well.

77

4. COMPOSING MASHUPS

Prevent CSRF attacks. Preventing CSRF attacks is more complicated. One

method is to require HTTP requests to include a secret user-specific token that is

passed between the client and the server when requests are made [154]. Another coun-

termeasure is to require client to provide the actual authentication data along with

HTTP requests. Method that is referred to as “double-submitted cookie” can be used

to prevent CSRF as well [157]. In this method a cookie containing a secret token is

used along with a token submitted in the actual HTTP request. The server accepts

only those requests that have matching token in both the request and the cookie. This

prevents CSRF as the attacker does not have means to modify or read the value stored

in the cookie. Furthermore, web services should avoid using HTTP GET requests to

initiate changes and use POST requests instead [157]. Even though the latter does not

prevent all CSRF attacks, it works as protection against some types of CSRF, including

some cases of JSON hijacking. Other means to make CSRF attacking more difficult,

yet not impossible, are limiting lifetime of session cookies and checking HTTP Referer

header. JSON hijacking can be prevented by using reliable JSON libraries to parse

the data instead of manually using eval() function [94, 150]. Some browsers provide

native JSON encoding and decoding, which is faster and more secure way to handle

JSON formatted data when compared to solutions implemented in JavaScript.

Use vulnerability checking tools. Vulnerability checing tools can be used to

find common exploits from web applications. Usually these test suites are provided for

free, and they can be used to find XSS vulnerabilities, system configuration problems,

etc. In addition, commercial scanning services are available.

Be careful when generating and executing code dynamically. Usually se-

curity guidelines instruct to refrain from generating and executing dynamically created

code – especially with JavaScript’s eval() function [94, 150] – as this kind of functions

are typically easily exploitable. This, however, may be integral functionality in some

mashups. Therefore other ways to secure the application need to be implemented. One

possible solution is to create a verification mechanism, such as digital signature that

ensures that the dynamically loaded code has not been tampered.

4.7.3 Accessing Interfaces with Separate Origins

Same Origin Policy is a web browser security model that distinct separate origins from

each other [22, 23]. The same origin policy is ill-suited for mashups because of the

78

4.7 Security

following reasons:

• The same origin policy applies only on document object model, not on JSON

data or JavaScript code, for instance. Therefore, the same origin policy can not

protect against CSRF attacks [94].

• Numerous ways to circumvent the same origin policy exists. Trusted domain can

easily be used as a proxy for distrusted data. If this is done, as is often the case

in mashups, the same origin policy does not offer any protection.

• Checking if two resources are of the same origin is not always reliable. Web

browsers enforce the same origin policy by checking the domain name of the

server as a string literal and ignore the possible path expression of the URL [94].

In addition, for two resources to be considered to be of the same origin, application

layer protocol and port number need to be the same as well. Therefore, domain

names http://www.example.com, http://example.com and corresponding IP

address 192.0.43.10 are interpreted as different domains. As pointed out by

Crites et al. [85], the same origin policy relies on insecure services such as the

Domain Name System (DNS), and it is prone to dynamic pharming [25] as well

as DNS rebinding [158] attacks.

• Some web browsers allow to override domain property (document.domain) in the

document object model, which makes the same origin policy ineffective.

Mashups, by definition, access content from different sources. On purely client-side

mashups, where using a proxy server is not an option, the same origin policy needs

to be violated. Therefore, more fine-grained solution for mashup security is necessary.

One such solution is Cross-Origin Resource Sharing (CORS) specification [95] by W3C,

which defines a standardized way to access resources in trusted domains.

CORS determines how a browser and a server can interact and determine whether

or not to allow cross-origin requests, and it provides means for developers to create

mashups without difficulties caused by the same origin policy. CORS can be used as a

more robust alternative for JSONP, which has been often used to circumvent the same

origin restriction.

However, CORS sets some requirements for interfaces used as well as browsers. It

requires server interface to include Access-Control headers to its responses, and the

79

4. COMPOSING MASHUPS

web browser needs to have support for CORS as well. Luckily, even though CORS

specification is still at draft stage, it is already implemented in most web browsers.

Furthermore, CORS has been adapted by other specifications, such as WebGL, where

textures are subject to cross-domain access control. Currently, numerous web services

already support CORS in some level, but others have not implemented CORS in their

interfaces.

The upcoming HTML5 specification [11] includes a technique called Web Messaging

[159] that enables secure cross-document messaging. This technique is targeted at

different problem than CORS, which addresses accessing content in remote servers.

In contrast, Web Messaging can be used to pass messages between different browser

windows and iframe elements that can be of different origins.

80

5

Towards Software as a Mashup

In this Chapter, we introduce an idea to extend mashups from composing content

artifacts and social communication to composing applications dynamically out of ex-

ecutable code components. We argue that this kind of software will be integral part

of the future web, sometimes referred to as “Web 3.0”. Here we discuss requirements

of such systems and describe the most substantial issues that need to be overcome.

Furthermore, we introduce our proof-of-concept implementation of a system that can

be used to create software as a mashup.

The Web has turned from a simple document sharing platform into a pervasive

distribution platform where different types of content artifacts, such as images, videos,

pieces of music, maps, books, and news items can be shared in the global scale. Social

communication and messaging have moved to the Web as well. In addition to hosting

data and other content, the Web is used increasingly as a software platform, and its main

model of delivery, referred to as software-as-a-service (SaaS), implies that applications

are available without client installations or manual upgrades. Instead, web-based soft-

ware is loaded dynamically on the fly as needed. There are numerous examples of such

applications in enterprise setting including customer resource management (CRM), en-

terprise resource management (ERP), human resource management (HRM) and content

management (CM). In addition, web applications available for public end users include

email, games, and office applications such as Google Docs (http://docs.google.com/)

and Microsoft SkyDrive (http://skydrive.com).

Mashups are utilizing the Web as a pervasive distribution platform and combining

content from multiple sources into an integrated experience. Unlimited access to data

through open interfaces enables completely unforeseen mashups. All this, however,

81

http://docs.google.com/
http://skydrive.com

5. TOWARDS SOFTWARE AS A MASHUP

requires careful implementation and taking numerous details into consideration, as

described earlier.

When the trend towards web-based software is taken into consideration, an inter-

esting question is how to realize mashware, or software composed as a mashup. To

answer this question, we have studied the related efforts made in this area and created

our own mashware implementation on top of a custom runtime environment. In the

following, the background Section presents the current state of the art and is based

mainly on the literature. Other Sections of this Chapter are based on work originally

presented in Publications VII and VIII.

5.1 Background and Related Work

Mashing up content artifacts is not the only option for mashups. Instead of individual

applications using resources, it is possible to use application components and download

them in the similar manner as we are used to download complete applications and

access online resources. This kind of software created as a mashup is referred to as

mashware [16], which is enabled in unforeseen scale by the fact that for the first time we

now have the Web, a global, uniform distribution channel. Consequently, a web-based

software component architecture is required to be able to mix software pieces together,

as explained in [16]. Similarly to a mashup ecosystems where mashup developers and

service providers collaborate, a global scale ecosystem of software component providers

and mashware developers – in other words a mashware ecosystem – can be created.

There are clear benefits for creating web software as a mashup. As described in [16],

this kind of environment would allow software developers to collaborate on an extremely

large scale. This would allow not only reuse of data, but user interface widgets, data

handling modules, and wireframes, among others. Loading necessary components on-

demand basis at runtime is a great benefit in terms of implementation flexibility and

cross-platform compatibility. For instance, flexibility of the system increases as the

system may download suitable version of the user interface after it has found out the

desired screen resolution and determined whether the device has support for touch

input or a regular keyboard and mouse interface. Cross-platform compatibility can be

enhanced as necessary device specific interfaces can be added later on request as well.

82

5.2 Component-based Software in Web 3.0

Combining software components together is not a new idea. In software devel-

opment, the possibility to reuse software modules has been a common practice for a

long time. Building large software systems out of prefabricated, reusable components

created by different software developers was originally proposed by McIlroy and other

participants of NATO Software Engineering conference back in 1968 [160], and since

then techniques for reusing software have been investigated for decades.

5.2 Component-based Software in Web 3.0

As pointed out in Publication VII, combination of technologies under Web 3.0 umbrella

will change the Web into even more suitable platform for mashware. While the term

“Web 3.0” has been sometimes used as a synonym for semantic web [161], our perception

of Web 3.0 is similar to [162], where the term refers to new ways to use the Web,

and using it in new domains. Technologies driving Web 3.0 include semantic web

[163, 164], HTML5 [11] and WebGL [96], advanced security models such as Cross-Origin

Resource Sharing (CORS) [95], high bandwidth network connections, and linking the

physical world with the Web. Especially, the semantic web, which refers to giving

well-defined structure and meaning for data stored currently within unstructured and

meaningless web documents, will obviously benefit mashups that could utilize such

data in unforeseen contexts easily. The other technologies – enhancing pervasiveness

and cross-platform compatibility of the Web as well as enabling new kind of applications

– allow implementing mashups in new domains, such as different kinds of embedded

terminals, for instance.

Desire for component based software has been associated with the definition of so-

called Web 3.0 as well. Interestingly, Google’s CEO Eric Schmidt described ideas similar

to mashware when he gave his definition for Web 3.0 at Seoul Digital Forum in 2007

[165]. He remarked that Web 3.0 applications will be pieced together, relatively small,

able to be run on any device, fast and customizable, distributed via social networks,

and using data stored in the cloud. Characteristics such as “pieced together”, “fast

and customizable” and “using data stored in the cloud” are features of mashware as

well. However, mashware is not limited to small applications and distribution through

social connections. Furthermore, universal-scale cross-platform compatibility is not a

83

5. TOWARDS SOFTWARE AS A MASHUP

requirement for mashware applications, even though this can be achieved with certain

platforms.

Another interesting remark, originally presented in Publication I, is that program-

matic interfaces – interfaces that are utilized in web applications by including a Java-

Script library created by the service provider – have become more and more common,

and this phenomenon can be construed as a step towards mashware. One reason behind

success of such interfaces is that they can be used conveniently with regular JavaScript

function calls, similarly to DOM and other interfaces found in web browsers. Often

the library is not hosted on the same server as the mashup, but downloaded from the

service provider’s server when needed. Consequently, the most recent version of the

interface is always used. The most successful example of this kind of interface is Google

Maps API, which is also the most popular interface used in mashups [99]. However,

other examples are available as well, including services for user authentication, social

networking, music and video playing, and data visualization.

5.3 Implementing Software as a Mashup

Mashup development is different from conventional software in numerous ways, as de-

scribed in [16, 45, 116], and reusing web software at the level of implementation has

not yet reached its full potential. There is still a an impedance mismatch between

web-based software development and software engineering, and development practices

for web applications are far from maturity levels of traditional software, as pointed out

in [17]. Especially, when taking the desire of creating web applications from software

components into account, it is apparent that research is needed in numerous areas, such

as development practices, security, modularity, legal aspecs, and software engineering

methodologies.

Even though some JavaScript libraries and application frameworks such as jQuery

or Prototype exist, they only provide some basic networking functionalities and user

interface widgets and effects, and using them concurrently in a single application is cum-

bersome. Currently, closest thing to individual software component system is Google

Maps, which is typically used for adding a map component into a web application.

However, typical application using Google Maps uses the map API for implementing

all other user interfacing activities as well, effectively defining the capabilities of the

84

5.3 Implementing Software as a Mashup

whole application. This makes using Google Maps is similar to any other application

framework rather than a generic downloadable software component.

When implementing web application architecture based on dynamically composed

software, need for carefully designed, compatible interfaces is self-evident. Current

interfaces used in web services are almost exclusively proprietary and vendor-specific.

For instance, changing an application from using Google Maps to OpenStreetMaps

would require major code rewrite efforts. If a component market is desired, standardized

interfaces to different services need to be created and published online.

Furthermore, components need to be delivered in platform-independent format

without static linking or advance binding [16]. Moreover, a security model allowing

components to be added dynamically into an application is required. If the execution

environment is a custom one, such as one used in Publication VIII, the security model

can be self-determined, but if a standard browser is used, similar concerns as those

presented in [16, 17] can be raised. We believe that ongoing work, such as W3C’s Se-

curity Activity Proposal (http://www.w3.org/2011/07/security-activity.html),

will eventually solve these issues, but before that, there will be numerous attempts to

circumvent the problems.

Another problem when implementing large mashware applications in a web browser

is that all dynamic code is executed in a single context. Therefore, the implementa-

tion is sensitive to naming collisions and performance degradation when the client-side

codebase is extended with dynamic modules. Even though JavaScript does not inher-

ently support modules, naming collisions can be avoided by specifying object interfaces

carefully and following JavaScript namespace patterns diligently. In addition, there is

an ongoing work to develop a specification for web workers, long running background

scripts that run independently from user interface scripts [166], which can offer a par-

tial solution for executing code in different threads. However, the specification points

out that web workers are relatively heavy-weight, and are not intended to be used in

large numbers, as they have a high start-up performance cost, and a high per-instance

memory cost [166].

85

http://www.w3.org/2011/07/security-activity.html

5. TOWARDS SOFTWARE AS A MASHUP

5.4 Proof-of-Concept Implementation

In our practical experiment of a mashware system, presented in Publication VIII, we

have applied the mashup architecture introduced earlier in Subsection 4.2.2. As web

browser security model is badly suited for this kind of applications, this prototype

utilizes Qt-based framework called Lively for Qt (http://lively.cs.tut.fi/qt/) as

a web runtime, similarly to mashups presented in Publication IV. In the following, we

briefly introduce the main points of the implementation and lessons learned.

Application architecture. Architecture of the mashware application (see Figure

5.1) is in align with the reference architecture for mashups and based on separating

different functions into independent components. Here, three types of downloadable

components are included into the system, but the architecture can be extended with

other types of components if desired (see Publication VIII for further description of se-

lected components). The three types of components are user interface widgets, content

extractors, and content formatters. The components can be requested with a mashware

manager that is capable of searching suitable components form a mashware repository,

a RESTful service containing component meta data. Content extractors and formatters

together form the data model of the mashware application. Finally, main application

containing the application logic, and actually composing the mashup by managing the

data presentation with rendering components, is included.

Figure 5.2 presents a mashware application using the described architecture. The

application is capable of searching and displaying images from an image hosting service.

In addition to image service accessing component, the example utilizes image filtering

component, user interface component library, and a component capable of accessing a

social networking service. Naturally, communication between the modules has a key

role in the mashware application. In our implementation, the communication is based

on common module interfaces, that are used to pass structured data from a component

to another.

Mashware repository. Mashware repository, which can be generalized into a

set of repositories, is used for discovering components that are available. The repos-

itory contains meta data of the components, and it has a RESTful interface for re-

questing the data. The interface is self-descriptive, and components can be searched

based on their capabilities. For instance, a rendering component capable of presenting

86

http://lively.cs.tut.fi/qt/

5.4 Proof-of-Concept Implementation

Figure 5.1: Example of mashware application architecture. Mashware manager is used
to download and enable components from the Web. Mashware repository is used to locate
the components.

content with image/jpeg MIME type can be searched with an HTTP GET request

http://example.com/renderers[contentTypes=’imagejpeg’]. Furthermore, meta

data entries can be linked together, which makes possible to recommend compatible

components.

Mashware manager utilizes the repository to search, download, and select compo-

nents to be used in the mashware application. An implementation can use more than

just one manager, and the manager can be loaded dynamically similarly to any other

component in the system. Furthermore, managers can cache components that are used

often and provide means to extend them at the client-side, if desired. Autonomous se-

lection of the components is possible thanks to possibility to search components based

on capabilities, as well as linking compatible components.

Using the repository and components in the application logic. To illustrate

how the mashware architecture is used in our implementation we provide some example

code listings written in JavaScript. As the listings show, the mashware manager is

responsible of providing the actual components that are selected in the application

logic.

In Listing 5.1 the mashware manager is used to access the repository and fetch

component meta data based on component types. Mashware manager has a function

87

http://example.com/renderers[contentTypes='imagejpeg']

5. TOWARDS SOFTWARE AS A MASHUP

Figure 5.2: Example of mashware application. This application could be used to search
and combine images with relevant content from a social networking service. Way of pre-
senting the application structure is adapted from [16].

Listing 5.1: Example of requesting component meta data from the mashware repository.

// Create new mashware manager instance

this.mw = new MashwareManager(this);

// Requesting possible components with

// mashware manager from the repository.

// The manager returns an array of meta data objects.

var renderers = this.mw.getComponents(’renderer ’);

var contentproviders = this.mw.getComponents(’contentprovider ’);

var filters = this.mw.getComponents(’filter ’);

getComponents, which is used to get a meta data array based on component type

provided as a string.

In the current implementation, selection of suitable component is done in the ap-

plication logic by using the exact name of the desired component as a key for function

selectMetadata. In Listing 5.2 three component instances – two content providers

and one filter component – are requested. The mashware manager has a function

getComponentInstanceWithMetadata to perform this functionality. When this func-

tion is called, the instance parent is passed as a parameter for the mashware manager

to be able to enable the component in the right context. The filter component is passed

to be used in another component.

Finally, Listing 5.3 shows how the component instances can be used in the appli-

cation logic to perform actions. In this case, a content provider component is used to

make a search to a web service when a user interface button is pressed.

88

5.4 Proof-of-Concept Implementation

Listing 5.2: Example of requesting component instances using meta data as query pa-
rameter.

// Using meta data to request component instances.

// First parameter passes the meta data ,

// second refers to component type , and

// third points to the parent of new component instance

this.visualrest = this.mw.getComponentInstanceWithMetadata(

selectMetadata(contentproviders , ’VisualRest ’),

’contentprovider ’,

this

);

// Passing the filter component to be used by another component.

this.visualrest.setFilter(

this.mw.getComponentInstanceWithMetadata(

selectMetadata(filters , ’OnlyTaggedImagesFilter ’),

’filter ’,

this.visualrest

)

);

this.twitter = this.mw.getComponentInstanceWithMetadata(

selectMetadata(contentproviders , ’TwitterSearch ’),

’contentprovider ’,

this

);

Listing 5.3: Example of using the component instances in the application logic.

// Function search is called when a button is

// pressed in the application.

QtMashwareClient.prototype.search = function () {

// Set callback for visualrest component

this.visualrest.setCallback(this , this.visualrestCallback);

// Download content by the tag in the search field

// See http :// visualrest.cs.tut.fi/ for the API

this.visualrest.downloadContent(

’q[tag]=’ + this.searchField.text

);

};

89

5. TOWARDS SOFTWARE AS A MASHUP

Lessons learned. After the mashware repository is populated with a set of com-

ponents that can be mixed without restrictions, creating new applications is very rapid.

The actual mashup logic can be written with only few lines of JavaScript code, and

modifying it is very straightforward. Moreover, the focus of implementation efforts

was shifted from interfacing with web services to creating the look and feel of the

mashup. Therefore, we argue that creating compelling mashware applications with our

of approach is possible for inexperienced developers as well.

As in software development in general, changing the component interfaces after-

wards is cumbersome, and careful planning is therefore required beforehand. This

promotes lucidity of the implementation and makes is easy to understand and debug

as well. Furthermore, passing data between software components should be done in a

well-defined format.

Current debugging tools support dynamically loaded code poorly, which makes the

development of new application components as well as testing them together more

difficult. Tracing code execution or variable values is not possible, and debugging tools

are not capable of pointing out the erroneous line of code. Therefore, debug logs need

to be used extensively. In addition, code needs to be written with small iterations and

tested constantly.

Finally, RESTful mashware repository is an important part of the implementation.

Utilizing this easy-to-use interface for discovering software components is straightfor-

ward, and it enables even applications where the software components are selected to

use automatically. The repository still lacks security features, and it could be further

developed to support different types of components as well as parallel components with

similar functionality but different runtime environment requirements.

90

6

Conclusions

This Chapter concludes the dissertation by summarizing and revisiting the main re-

sults of the work. Furthermore, introduction to included publications is provided and

author’s contributions in publications are described. Future work that can be based on

the results of this work is outlined as well.

6.1 Summary

This dissertation describes and addresses numerous issues regarding mashup ecosys-

tems and mashup development. To achieve this, different mashup ecosystems, both

implicit and explicit, are described along with specialized ecosystems with consider-

able limitations. Furthermore, the dissertation discusses practical issues that need to

be taken into consideration when developing mashups. In addition, a novel approach

to web software development – creating software as a mashup – is introduced, and a

realization of such concept is described.

Chapter 2 includes a broad introduction to the Web as a mashup platform, and it

illustrates possibilities of mashups, as well. First, a concept referred to as SOA, which

is often used when web service-based applications are developed, is introduced. Next,

different types of existing mashups are briefly covered. Web resources are the main

ingredients of mashups, and therefore it is described how to access these resources.

Development process of mashups with and without specialized tools is described to

give an overview of the typical approach used. Some mashup patterns are available,

especially on enterprise setting, and these are briefly described. Furthermore, as web

91

6. CONCLUSIONS

browser is not the only option for a mashup runtime, general requirements for such

systems are briefly summarized.

Chapter 3 describes mashup ecosystems that are formed to allow users, mashup de-

velopers, and service providers to collaborate. To gain better understanding of mashup

ecosystems, we first describe mashup ecosystems from different perspectives including

user’s, mashup developer’s, and service provider’s view on the subject. In addition,

four levels of support that a service provider can offer for mashups are introduced,

and mashup ecosystems are roughly categorized into explicit and implicit ecosystems.

Furthermore, we present practical issues that need to be taken into account when a

mashup ecosystem is formed, and present our practical implementation of a specialized

ecosystem targeted at mobile multimedia mashups.

Mashup composing with general purpose web development tools is the subject of

Chapter 4. Being a relative immature area, mashup development suffers from the same

issues as web development in general, but it has additional issues as well, mainly because

of need to access numerous interfaces and pass information between them. This leads to

numerous security issues, but also other difficulties in the areas of maintainability and

dependability, for instance. Furthermore, in this chapter we describe a well-engineered

reference architecture for mashups that can be used as a guidance when a mashup is

created. As accessing different resources is central part of any mashup implementa-

tion, we have pointed out numerous considerations on accessing both web and local

resources. On mobile and embedded devices, even more careful approach to mashups

development is needed mainly because of hardware and network connectivity limita-

tions, and therefore composing mashups with such devices as a target is covered, as

well.

Applying the idea of mashups to software development is described in Chapter 5.

This extends the lessons learned during mashup development to software development.

Even though creating large applications from software components is nothing new, web

development methods and tools for creating software in such style are still immature.

In this Chapter, requirements, issues, and limitations of creating web applications from

downloadable components are discussed. In addition, a proof-of-concept implementa-

tion of this kind of software is described as an example.

92

6.2 Research Questions Revisited

6.2 Research Questions Revisited

This dissertation addresses three research questions. This Section revisits the questions

and gives a brief summary of the main results. The first research question, which is

addressed in the Chapter 3, is the following.

RQ1. How to design mashup ecosystems where end-users, mashup authors, and

service providers collaborate?

This dissertation describes mashup ecosystems where end-users, mashup developers,

and service providers collaborate. In addition to ecosystem consisting of all available

web services and mashups built on top of them, subsets of this global ecosystem, which

can be roughly categorized into explicit and implicit ecosystems, can be considered as

well. The three ecosystem actors have different views on mashup ecosystems, and this

dissertation describes these different perspectives. In addition we identified four levels

of support that service providers can offer for mashup development.

Furthermore, when mashup ecosystems are formed, numerous practical issues need

to be taken into account. The dissertation points out how interface compatibility, secu-

rity, and legislation are the fundamental challenges of mashup ecosystems. Moreover,

one has to determine whether the mashup functionality resides on the server-end or

the client-end, or is a hybrid model combining both approaches followed. To elaborate

how specialized mashup ecosystems can be created, we described an example imple-

mentation targeted at enabling mobile multimedia mashups. The ecosystem follows a

hybrid model where an aggregator server hides the complexity of accessing numerous

web services, and the mashup functionality resides on the client-end.

The second research question – addressed in Chapter 4 – is the following.

RQ2. How to solve problems related to client-side mashup development on desk-

top and mobile devices?

Often special purpose tools are proposed to make mashup development easier, but

here, we have used traditional web development tools to create mashups instead of

such tools that typically limit mashup developer’s possibilities. Mashup design has

been often considered as opportunistic activity, but our view is different. To foster

maintainability, modifiability, and reusability of mashup implementations, we describe

93

6. CONCLUSIONS

a reference architecture for mashups that can be used as a fundamental structure when

composing client-side mashups with manual development methods. Instead of consider-

ing mashup development as an ad hoc activity, here it is regarded as serious engineering

effort that benefits from careful design and implementation. Consequently, we describe

a set of general design principles that should be followed in the process of mashup

creation. Accessing different interfaces play an important role in mashups, and in this

dissertation we describe what should be taken into account when interfacing with web

and local services. Special requirements that are faced when mashups are developed

for mobile devices are described, too. In addition, to address security related issues of

mashups, we point out mashup attack scenarios and security practices that should be

followed to increase mashup security.

The third research question, which is addressed in the Chapter 5, is the following.

RQ3. How to realize software as a mashup?

The last research question considers realizing software composed out of executable

code components. We pointed out that this approach to software development – some-

times referred to as mashware – fits very well for the current way web is used, and the

combination of emerging technologies included into Web 3.0 definition will change the

Web even more suitable platform for mashware. Despite reusing software components

in traditional application development has been investigated for decades, there have

not been widespread systems that would enable mashware. Consequently, research is

needed in numerous areas of mashware engineering. This dissertation describes the most

relevant issues, but further work to solve these issues is left for future research efforts.

To illustrate possibilities of mashware development, we describe a proof-of-concept im-

plementation where the reference mashup architecture is applied. However, a special

purpose runtime environment is used in the implementation, and therefore numerous

problems that would be faced when a web browser would be used, are avoided.

6.3 Research Contributions Revisited

The contributions of this dissertation were briefly summarized in Section 1.4, and here

we compare the main results to the existing work presented in the literature. The

94

6.3 Research Contributions Revisited

main results about mashup ecosystems, mashup composing, and software created as a

mashup are revisited in the following.

Mashup Ecosystems. In [99] Yu and Woodart have considered mashup ecosys-

tem that consists of all available mashups and services indexed in their data source

ProgrammableWeb, and growth of this ecosystem is modeled by Weiss and Gangadha-

ran in [100]. Instead of considering this kind of global ecosystem, we have focused on

smaller subsystems consisting only few selected services and mashups build on top of

them. This approach is similar to Bosch’s [98], where software ecosystems are consid-

ered as controllable entities and categorized. Bosch mentions mashup ecosystems under

“End-User Programming Software Ecosystems” category, where ecosystems build with

mashup tools such as Yahoo! Pipes are discussed.

Our work focuses on addressing practical issues that mashup ecosystem authors

need to deal with when such systems are created either explicitly or implicitly. We

describe mashup ecosystems from perspectives of mashup user, mashup author, and

service provider. We identify four levels of support that a service provider can offer

for mashup developers. Instead of considering only tool-oriented mashup ecosystems,

we have addressed ecosystems that are build with general purpose web development

tools and methods. As a technical contribution and an example ecosystem, we present

a mashup ecosystem for aggregating videos from multiple web video services.

Mashup development. Mashup development has been widely researched, and

numerous tools for mashup composing have been created and extensively reported in

[68, 69, 70], for instance. Mashup achitecture has been studied by López et al. [117], and

their layered server-side approach is targeted at creating mashups in enterprise setting.

The example mashup presented in [117] resembles a portal with connected portlets. Re-

quirement to follow established software engineering principles in mashup development

is mentioned in [114], which is a case study pointing out the need for careful engineer-

ing when developing mashups. Similarly, [52] identifies numerous mashup development

challenges and addresses them with a mashup architecture and pipeline-based tool for

mashup composing. Furthermore, Liu et al. have studied component-based approach

for thematic mashups in [115].

Instead of focusing on a tailored solution for mashup composing, our work uses

general purpose web development tools to create mashups. To aid the development

of mashups, we describe a reference architecture for client-side mashups and introduce

95

6. CONCLUSIONS

a set of general design principles for mashup composing. Furthermore, we address

numerous issues about communicating with web services and accessing local resources in

embedded devices. In purpose of fostering development of mashups on mobile devices,

we listed a number of considerations to be taken into account.

Software as a mashup. The idea of software developed as a mashup has been

introduced by Taivalsaari in [16], where mashware is described having a role in the

future web. Numerous areas where further research is necessary are listed by Mikkonen

and Taivalsaari in [17]. Our work reviews technologies included under term “Web

3.0” and describes how those will promote role of software developed as a mashup in

the future web. As a technical contribution, we have developed the first laboratory

prototype of a mashware application.

6.4 Introduction to the Included Publications

This thesis consists of the introduction part and eight included publications. The

publications are described below.

• Publication I. Publication I discusses software ecosystems that are created when

mashups are developed. The paper points out that these ecosystems can be

implicit or explicit. General ecosystem model consisting of mashup users, service

providers, and mashup authors is described, and four levels of support that service

providers can offer for mashups are identified. Furthermore, the paper discusses

the different breeds and types of mashup ecosystems that have been introduced.

In addition, the publication identifies challenges that mashup ecosystem confronts

in the areas of cloud infrastructure, web services, legal issues, and tool support.

• Publication II. Publication II includes a literature review about mashup ecosys-

tems, mashup security, and end-user programming solutions. Moreover, the pub-

lication describes numerous fundamental challenges that are encountered when a

mobile multimedia mashup ecosystem is realized. The ecosystem targets at pro-

viding consistent user experience on different end user devices. This constitutes

a basis for the work that is described in Publication III.

• Publication III. Publication III presents an aggregator-based mashup ecosystem

architecture that is a realization of the ecosystem described in Publication II.

96

6.4 Introduction to the Included Publications

The architecture is analyzed, and a discussion is given on how the goals of the

system are achieved. The publication also includes a description of a client-side

application that utilizes the underlying mashup ecosystem.

• Publication IV. Existing software environments and tools as well as numerous

practical examples of mashups targeted at mobile devices are presented in Pub-

lication IV. These mashups are built with a special runtime environment, Lively

for Qt, which allows to run the mashups even on devices with modest processing

power. Publication presents the example mashups in detail and points out nu-

merous practical issues in usability, connectivity, and performance of mashups,

as well as general issues such as lack of well-defined interfaces and absence of a

fine-grained security model.

• Publication V. Two mashup runtime environments for embedded systems fol-

lowing procedural and declarative development style are discussed in Publication

V. This publication points out how using a specialized runtime benefits mashups

especially on embedded devices where using a web browser might be an overkill

for performance. The publication discusses how a mashup environment that ac-

cesses the user context and local resources, and combines them with web content

can be implemented. The approach used for composing such mashups is similar

to procedural development environment of Publication IV, but now a declarative

Qt-based environment is used as well. Here, both environments are used to com-

pose mashups that have ability to use and share local data and device peripherals.

Furthermore, as a practical implementation, a simple application that accesses

the device’s GPS data and combines it with normal web data is presented. This

approach can be generalized for different combinations of technologies and de-

vices, provided that adequate means of communication are available.

• Publication VI. Thirteen guidelines for mashup developers are described in

Publication VI. This set of guidelines is based on hand-on experiences in develop-

ing various client-side mashups, and it can help mashup developers to choose the

right methods when building mashups. The guidelines are in the areas of mashup

design and interfacing with web services. In addition, two guidelines that handle

broader issues are presented. Furthermore, the publication describes a reference

97

6. CONCLUSIONS

architecture for client-side mashups and compares it with traditional web archi-

tectures. This publication includes real-life example mashups, targeted at desktop

and mobile devices and constructed with traditional web development methods

as well as Lively for Qt, the system used in Publication IV. The guidelines and

the reference architecture are explained further with the examples.

• Publication VII. The Web is a reforming platform, and the way it is used

evolves constantly. Publication VII describes how technologies listed under an

umbrella term “Web 3.0” will benefit mashup development. Being a position

paper, the publication argues how mashware, software created as mashup, will be

an integral part of Web 3.0, and how it plays a significant role on how software

is developed in the future. In addition, the publication lists different types of

mashups that are already available, or will eventually become available.

• Publication VIII. Finally, the first realization of a mashware application is

described in Publication VIII. The paper provides an overview for mashware

computing, where downloadable components form applications in piecemeal fash-

ion. In the publication, we describe in detail how mashware components can be

derived and included dynamically into an application. Furthermore, we apply the

previously presented mashup reference architecture (see Publication VI) to soft-

ware created as mashup, and realize a proof-of-concept implementation of such

application.

6.5 Author’s Contributions in Publications

The author of this thesis made contributions to the included publications as follows.

• Publication I. Publication I is a joint effort with Tommi Mikkonen. In this

publication, the author of this dissertation did the majority of writing out of the

ideas, described the mashup ecosystem characteristics, and pointed out the prac-

tical issues that mashup ecosystems need to deal with. The ideas were hatched

together with the co-author Tommi Mikkonen.

• Publication II. In Publication II the author of this dissertation did the writing

work, conducted the literature review, and presented the fundamental challenges

98

6.5 Author’s Contributions in Publications

of mashup ecosystems. Co-authors Jarno Kallio and Tommi Mikkonen gave sug-

gestions and feedback about the challenges that mashup ecosystems encounter in

practice.

• Publication III. Publication III is a joint effort with Mikko Hartikainen and

Jarno Kallio. This publication extends and realizes the ideas presented in publi-

cation II. The author of this dissertation wrote out the mashup ecosystem archi-

tecture description and the background study. The proposed approach to mobile

mashup ecosystem was evaluated together with Mikko Hartikainen who did the

practical development work of the client-side implementation.

• Publication IV. In Publication IV the author developed the five example mash-

ups. The author gleaned and wrote out the lessons learned about these exper-

iments together with co-author Feetu Nyrhinen. Applicability of the Lively for

Qt platform to mobile mashup development was analyzed together with Feetu

Nyrhinen. The Lively for Qt platform was originally a dynamic programming

environment developed by two other co-authors Tommi Mikkonen and Antero

Taivalsaari.

• Publication V. Publication V is a joint effort with Tommi Mikkonen. The

author of this dissertation developed the proof-of-concept implementation using

both procedural and declarative approach and evaluated as well as compared the

two approaches.

• Publication VI. Publication VI includes guidelines and reference architecture

for mashups. The guidelines were generated together with co-author Feetu Nyrhi-

nen. The reference architecture for mashups was created together with Tommi

Mikkonen. The example mashups where the guidelines and the architecture are

applied are implemented by the author of this dissertation.

• Publication VII. The author of this dissertation is the sole author in Publication

VII. In this publication, Tommi Mikkonen had an advisory role and provided

comments that lead to improvements.

99

6. CONCLUSIONS

• Publication VIII. Publication VIII is a joint effort with Tommi Mikkonen.

The author derived the mashware components used in the proof-of-concept im-

plementation, designed a system that could be used to deliver the components,

created the example application, and evaluated the selected approach. Idea of the

software as an on-demand service was further developed together with co-author

Tommi Mikkonen, based on his previous research on the subject.

6.6 Future Work

Recent development in web browser capabilities, such as HTML5, WebGL, and other

new interfaces, have made browser-based approach towards cross-platform application

development more appealing. In addition, new fine grained proposals for browser secu-

rity, such as CORS, are removing obstacles to utilizing different web services in a single

application. Poor performance of web applications is going down in history as well,

when JavaScript engines in browsers are gaining performance, and browser graphics are

turning to be hardware accelerated on desktop and even on handheld devices. When

these developments have been analyzed, it has been argued that this trend towards

web-based software development will become even stronger in the future [12]. There-

fore, also mashup development will focus on using existing browser-based solutions as

runtime platform instead of native applications or other special purpose environments.

However, as has been pointed out in [167], to foster this development, research efforts

are necessary on education of dynamic programming languages, software deployment

models, and web software testing. When the goal is to develop mashups and mashware,

these research efforts can be summarized as follows.

• Mashups are programmed in evolutionary, exploratory programming style asso-

ciated with dynamic languages [168], which is not familiar for developers that

are used to create software with static programming languages. Therefore, re-

search in software education is needed to be able to provide necessary skills for

developers creating mashups and mashware.

• Software deployment practices for mashware are entirely different from conven-

tional binary software. Executable software components in a mashware applica-

tion can be deployed instantly all over the world, and this enables “nano releases”

100

6.6 Future Work

of components – releases that can occur multiple times per day. One of the funda-

mental challenges of the deployment model of mashware is defining a model that

supports software components nano release cycles and constant development, po-

tentially without need to restart the mashware application when an update takes

place.

• Mashups and mashware consists of pieces that are loaded dynamically without

any static compilation, type checking, or linking. Because of this, and other

issues related to such software, testing needs to be done in completely different

manner than traditional software. Therefore, interesting research challenge is how

to establish methodologies for testing mashups and mashware.

In addition to solving the issues listed above, dealing with conflicting terms of

services in mashup ecosystems is a problem that needs to be addressed. Numerous web

services provide an interface for their system, but some actions that are necessary when

a consumer-oriented mashup is build can be forbidden in the terms of the service. For

instance, caching the content on an application server may be prohibited. Method for

evaluating possibility to combine two or more services in a mashup from perspective of

legistlation is therefore interesting subject for further research.

Creating software as a mashup is very promising approach to web software devel-

opment. If fits very well in the way the Web is used and – as pointed out in publication

VII – this trend seems to gain strength as new web technologies emerge. Therefore,

research about engineering practises in this evolving setting is in our future scope.

101

6. CONCLUSIONS

102

Glossary

API Application Programming Interface. For complete de-
scription in the context of this thesis see “web interface”.

Composite application Composite application is built by combining multiple ex-
isting functions into a new application. Information used
in composite applications is typically of business sources.

CSS Cascading Style Sheets is a style sheet language used for
describing the look and formatting of a document written
in a markup language such as HTML.

DHTML Dynamic HTML is an umbrella term for a collection
of technologies (typically HTML, JavaScript, CSS, and
DOM) used together to create interactive and animated
web sites.

DOM Document Object Model defines a standard way for ac-
cessing and manipulating HTML, XHTML, and XML
documents.

HTML HyperText Markup Language is the main markup lan-
guage for displaying web pages and other information
that can be displayed in a web browser.

Hyperlink Hyperlink is a word, phrase, or image that you can click
on to access to a new web document or a new section
within the current document.

Hypertext Hypertext is text with references (hyperlinks) to other
documents that the reader can immediately access.

103

6. GLOSSARY

JavaScript JavaScript is a scripting language commonly imple-
mented as part of a web browser.

JSON JavaScript Object Notation is a lightweight data-
interchange format.

Mashup Mashup is web application that combines resources over
web interfaces into an integrated application that has in-
creased value for the end-user.

Mashup ecosystem Mashup ecosystem is a software ecosystem consisting of
mashups and web services.

Mashware Mashware application is a web application that is created
from software components downloaded over the Web.

Portal A web portal is a web site that brings information to-
gether from diverse sources in a uniform way.

Programmatic interface Programmatic interface is a web interface that is used
with a programming library.

REST Representational State Transfer is a style of software ar-
chitecture for distributed systems such as the Web.

RPC Remote Procedure Call is an inter-process communication
that allows a computer program to cause a subroutine or
procedure to execute on another computer on a shared
network without the programmer explicitly coding the
details for this remote interaction.

Same origin policy Same origin policy restricts how a document or script
loaded from one origin can interact with a resource from
another origin.

Screen scraping See “web scraping”.

Service-level Agreement Service-level agreement (SLA) is a part of a service con-
tract where a service is formally defined.

Service-Oriented Archi-
tecture

Service-oriented architecture (SOA) is a set of principles
and methodologies for designing and developing software
in the form of interoperable services

104

Situational mashup A mashup developed as situational application – an ap-
plication that is created for a narrow group of users with
unique needs.

Software ecosystem Software ecosystem is a set of businesses functioning as
a unit and interacting with a shared market for software
and services, together with relationships among them.

Terms of Service Terms of Service (TOS, Terms of Use, Terms and Condi-
tions) are rules which one must agree to abide by in order
to use a service.

Web The Web (World Wide Web, WWW) is a system of in-
terlinked hypertext documents accessed via the Internet.

Web feed Web feed, such as RSS or Atom feed, is a data format used
for providing users with frequently updated content.

Web interface Web interface can be used by an application to access a
web service.

Web scraping Web scraping refers to parsing data from a representa-
tion intended to be read by a human, also referred to as
“screen scraping”.

Widget Widget (control) is an element of a graphical user inter-
face that displays an information arrangement changeable
by the user, such as a window or a text box.

Wiki Wiki is a website which allows its users to add, modify,
or delete its content via a web browser usually using a
simplified markup language or a rich-text editor.

105

6. GLOSSARY

106

References

[1] B. Taylor. Mapping your way. Google’s Official Blog, February 2005. Avail-

able online: http://googleblog.blogspot.fi/2005/02/mapping-your-way.

html.

[2] T. H. Nelson. Complex information processing: A file structure for

the complex, the changing and the indeterminate. In Proceedings of the

1965 20th national conference, ACM ’65, pages 84–100, New York, NY, USA,

1965. ACM.

[3] D. Raggett, A. Le Hors, and I. Jacobs. HTML 4.01 specification. W3C,

December 1999. Available online: http://www.w3.org/TR/html4.

[4] D. Flanagan. JavaScript: The Definitive Guide. O’Reilly Media, Inc., Se-

bastopol, CA, USA, third edition, 1998.

[5] E.C.M.A. International. ECMA-262: ECMAScript language specification.

European Association for Standardizing Information and Communication Sys-

tems, Geneva, Switzerland, third edition, December 1999.

[6] E. J. Etemad. Cascading Style Sheets (CSS). W3C, May 2011. Available

online: http://www.w3.org/TR/CSS/.

[7] W3C DOM Interest Group. Document Object Model. W3C, January

2005. Available online: http://www.w3.org/DOM/.

[8] Adobe Systems Inc. Adobe Flash Player. Available online: http://www.

adobe.com/software/flash/about/.

107

http://googleblog.blogspot.fi/2005/02/mapping-your-way.html
http://googleblog.blogspot.fi/2005/02/mapping-your-way.html
http://googleblog.blogspot.fi/2005/02/mapping-your-way.html
http://doi.acm.org/10.1145/800197.806036
http://doi.acm.org/10.1145/800197.806036
http://www.w3.org/TR/html4
http://www.w3.org/TR/html4
http://www.ecma-international.org/publications/standards/Ecma-327.htm
http://www.w3.org/TR/CSS/
http://www.w3.org/DOM/
http://www.adobe.com/software/flash/about/
http://www.adobe.com/software/flash/about/
http://www.adobe.com/software/flash/about/

REFERENCES

[9] Oracle Corporation. Rich internet applications deployment advice:

Applet deployment. Available online: http://docs.oracle.com/javase/6/

docs/technotes/guides/jweb/applet/applet_deployment.html.

[10] J. J. Garrett. Ajax: A new approach to web applications,

February 2005. Available online: http://www.adaptivepath.com/ideas/

ajax-new-approach-web-applications.

[11] R. Berjon, R. Leithead, E. D. Navara, E. O’Connor, and S. Pfeiffer.

HTML 5 specification. W3C, December 2012. Available online: http://www.

w3.org/TR/2012/CR-html5-20121217/.

[12] M. Anttonen, A. Salminen, T. Mikkonen, and A. Taivalsaari. Trans-

forming the Web into a real application platform: New technologies,

emerging trends and missing pieces. In Proceedings of the 2011 ACM Sym-

posium on Applied Computing, SAC ’11, pages 800–807, New York, NY, USA,

2011. ACM.

[13] A. Taivalsaari, T. Mikkonen, M. Anttonen, and A. Salminen. The

death of binary software: End-user software moves to the Web. In

Proceedings of the 2011 Ninth International Conference on Creating, Connect-

ing and Collaborating through Computing, C5’11, pages 17–23, Washington, DC,

USA, 2011. IEEE Computer Society.

[14] D. G. Messerschmitt and C. Szyperski. Software Ecosystem: Understanding

an Indispensable Technology and Industry. MIT Press, Cambridge, MA, USA,

2003.

[15] J. Salo, T. Aaltonen, and T. Mikkonen. MashReduce: Server-side

mashups for mobile devices. In Proceedings of the 6th international conference

on Advances in grid and pervasive computing, GPC’11, pages 168–177, Berlin,

Heidelberg, 2011. Springer-Verlag.

[16] A. Taivalsaari. Mashware: The future of web applications. Technical

report, Sun Microsystems, Inc., Mountain View, CA, USA, 2009. Available online:

https://labs.oracle.com/techrep/2009/smli_tr-2009-181.pdf.

108

http://docs.oracle.com/javase/6/docs/technotes/guides/jweb/applet/applet_deployment.html
http://docs.oracle.com/javase/6/docs/technotes/guides/jweb/applet/applet_deployment.html
http://docs.oracle.com/javase/6/docs/technotes/guides/jweb/applet/applet_deployment.html
http://docs.oracle.com/javase/6/docs/technotes/guides/jweb/applet/applet_deployment.html
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.w3.org/TR/2012/CR-html5-20121217/
http://www.w3.org/TR/2012/CR-html5-20121217/
http://www.w3.org/TR/2012/CR-html5-20121217/
http://doi.acm.org/10.1145/1982185.1982357
http://doi.acm.org/10.1145/1982185.1982357
http://doi.acm.org/10.1145/1982185.1982357
http://dx.doi.org/10.1109/C5.2011.9
http://dx.doi.org/10.1109/C5.2011.9
http://dl.acm.org/citation.cfm?id=2008928.2008952
http://dl.acm.org/citation.cfm?id=2008928.2008952
https://labs.oracle.com/techrep/2009/smli_tr-2009-181.pdf

REFERENCES

[17] T. Mikkonen and A. Taivalsaari. The mashware challenge: Bridging

the gap between web development and software engineering. In Pro-

ceedings of the FSE/SDP workshop on Future of software engineering research,

FoSER’10, pages 245–250, New York, NY, USA, 2010. ACM.

[18] P. Järvinen. Research questions guiding selection of an appropriate

research method. In European Conference on Information Systems, pages 124–

131, Vienna University of Economics and Business Administration, July 2000.

Available online: http://www.cs.uta.fi/reports/dsarja/D-2004-5.pdf.

[19] M. K. Sein, O. Henfridsson, S. Purao, M. Rossi, and R. Lindgren.

Action design research. MIS Quarterly, 35(2), June 2011.

[20] C. Bizer, T. Heath, and T. Berners-Lee. Linked data – The story so

far. International Journal on Semantic Web and Information Systems (IJSWIS),

5(3):1–22, March 2009.

[21] J. Yu, B. Benatallah, F. Casati, and F. Daniel. Understanding mashup

development. IEEE Internet Computing, 12(5):44–52, 2008.

[22] J. Ruderman. Same-origin policy for JavaScript. Mozilla Developer Net-

work. Available online: https://developer.mozilla.org/en-US/docs/Same_

origin_policy_for_JavaScript?redirect=no.

[23] A. Barth. The Web origin concept. IETF, RFC 6454 (Proposed Standard),

December 2011. Available online: http://www.ietf.org/rfc/rfc6454.txt.

[24] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell. Protecting

browser state from web privacy attacks. In Proceedings of the 15th in-

ternational conference on World Wide Web, WWW ’06, pages 737–744, New

York, NY, USA, 2006. ACM.

[25] C. Karlof, U. Shankar, J. D. Tygar, and D. Wagner. Dynamic pharm-

ing attacks and locked same-origin policies for web browsers. In Pro-

ceedings of the 14th ACM conference on Computer and communications security,

CCS ’07, pages 58–71, New York, NY, USA, 2007. ACM.

109

http://doi.acm.org/10.1145/1882362.1882413
http://doi.acm.org/10.1145/1882362.1882413
http://www.cs.uta.fi/reports/dsarja/D-2004-5.pdf
http://www.misq.org/archivist/vol/Queue/SeinHenfridsson.html
http://dx.doi.org/10.4018/jswis.2009081901
http://dx.doi.org/10.4018/jswis.2009081901
https://developer.mozilla.org/en-US/docs/Same_origin_policy_for_JavaScript?redirect=no
https://developer.mozilla.org/en-US/docs/Same_origin_policy_for_JavaScript?redirect=no
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6454.txt
http://doi.acm.org/10.1145/1135777.1135884
http://doi.acm.org/10.1145/1135777.1135884
http://doi.acm.org/10.1145/1315245.1315254
http://doi.acm.org/10.1145/1315245.1315254

REFERENCES

[26] T. Oda, G. Wurster, P. C. van Oorschot, and A. Somayaji. SOMA:

Mutual approval for included content in web pages. In Proceedings of

the 15th ACM conference on Computer and communications security, CCS ’08,

pages 89–98, New York, NY, USA, 2008. ACM.

[27] R. Thompson. Web services for remote portlets specification v2.0. OA-

SIS Standard, June 2007. Available online: http://docs.oasis-open.org/

wsrp/v2/wsrp-2.0-spec.html.

[28] A. Abdelnur, E. Chien, and S. Hepper. JSR-168 portlet specification.

Java Community Process Program, October 2003. Available online: http://

jcp.org/en/jsr/detail?id=168.

[29] S. Hepper. JSR-286 portlet specification 2.0. Java Community Process

Program, June 2008. Available online: http://www.jcp.org/en/jsr/detail?

id=286.

[30] J. Polgar. Using WSRP 2.0 with JSR 168 and 286 Portlets. Interna-

tional Journal of Web Portals (IJWP), 2(1):45–57, 2010.

[31] S. Peenikal. Mashups and the enterprise. MphasiS, White paper, Septem-

ber 2009. Available online: http://www.mphasis.com/pdfs/Mashups_and_the_

Enterprise.pdf.

[32] C. Keyser. Composite applications: The new paradigm. Microsoft Devel-

oper Network. Available online: http://msdn.microsoft.com/en-us/library/

bb266335.aspx.

[33] A. Gutmans. PHP: Supporting the new paradigm of situational and

composite web applications. In Proceedings of the 2006 ACM SIGMOD inter-

national conference on Management of data, SIGMOD ’06, pages 707–707, New

York, NY, USA, 2006. ACM.

[34] R. Fernández, D. Lizcano, S. Ortega, and J. Soriano. Towards a user-

centered composition system for service-based composite applications.

In Proceedings of the 11th International Conference on Information Integration

and Web-based Applications & Services, iiWAS ’09, pages 321–330, New York,

NY, USA, 2009. ACM.

110

http://doi.acm.org/10.1145/1455770.1455783
http://doi.acm.org/10.1145/1455770.1455783
http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spec.html
http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spec.html
http://jcp.org/en/jsr/detail?id=168
http://jcp.org/en/jsr/detail?id=168
http://www.jcp.org/en/jsr/detail?id=286
http://www.jcp.org/en/jsr/detail?id=286
http://www.jcp.org/en/jsr/detail?id=286
http://www.mphasis.com/pdfs/Mashups_and_the_Enterprise.pdf
http://www.mphasis.com/pdfs/Mashups_and_the_Enterprise.pdf
http://www.mphasis.com/pdfs/Mashups_and_the_Enterprise.pdf
http://msdn.microsoft.com/en-us/library/bb266335.aspx
http://msdn.microsoft.com/en-us/library/bb266335.aspx
http://msdn.microsoft.com/en-us/library/bb266335.aspx
http://doi.acm.org/10.1145/1142473.1142553
http://doi.acm.org/10.1145/1142473.1142553
http://doi.acm.org/10.1145/1806338.1806397
http://doi.acm.org/10.1145/1806338.1806397

REFERENCES

[35] D. Lizcano, J. Soriano, M. Reyes, and J. J. Hierro. EzWeb/FAST:

Reporting on a successful mashup-based solution for developing and

deploying composite applications in the upcoming web of services. In

Proceedings of the 10th International Conference on Information Integration and

Web-based Applications & Services, iiWAS ’08, pages 15–24, New York, NY, USA,

2008. ACM.

[36] A. H. H. Ngu, M. P. Carlson, Q. Z. Sheng, and Hye young P. Semantic-

based mashup of composite applications. IEEE Transactions on Services

Computing, 3(1):2–15, January 2010.

[37] T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Pren-

tice Hall PTR, Upper Saddle River, NJ, USA, 2005.

[38] M. P. Papazoglou and D. Georgakopoulos. Introduction: Service-

oriented computing. Communications of the ACM, 46(10):24–28, October

2003.

[39] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana. Web Ser-

vices Description Language (WSDL) Version 2.0 Part 1: Core lan-

guage. W3C, June 2007. Available online: http://www.w3.org/TR/2007/

REC-wsdl20-20070626.

[40] L. Clement, A. Hately, C. von Riegen, and T. Rogers. UDDI version

3.0.2. OASIS Standard, October 2004. Available online: http://uddi.org/

pubs/uddi_v3.htm.

[41] J. McGovern, S. Tyagi, M. Stevens, and S. Mathew. Java Web Services

Architecture. Morgan Kaufmann Publishers, Burlington, MA, USA, 2003.

[42] T. Nestler. Towards a mashup-driven end-user programming of SOA-

based applications. In Proceedings of the 10th International Conference on

Information Integration and Web-based Applications & Services, iiWAS ’08, pages

551–554, New York, NY, USA, 2008. ACM.

[43] J. McKendrick. Mashup vs. SOA app: What’s the difference?

ZDNet Article, June 2006. Available online: http://www.zdnet.com/blog/

service-oriented/mashup-vs-soa-app-whats-the-difference/647.

111

http://doi.acm.org/10.1145/1497308.1497317
http://doi.acm.org/10.1145/1497308.1497317
http://doi.acm.org/10.1145/1497308.1497317
http://doi.acm.org/10.1145/944217.944233
http://doi.acm.org/10.1145/944217.944233
http://www.w3.org/TR/2007/REC-wsdl20-20070626
http://www.w3.org/TR/2007/REC-wsdl20-20070626
http://uddi.org/pubs/uddi_v3.htm
http://uddi.org/pubs/uddi_v3.htm
http://uddi.org/pubs/uddi_v3.htm
http://uddi.org/pubs/uddi_v3.htm
http://doi.acm.org/10.1145/1497308.1497408
http://doi.acm.org/10.1145/1497308.1497408
http://www.zdnet.com/blog/service-oriented/mashup-vs-soa-app-whats-the-difference/647
http://www.zdnet.com/blog/service-oriented/mashup-vs-soa-app-whats-the-difference/647
http://www.zdnet.com/blog/service-oriented/mashup-vs-soa-app-whats-the-difference/647

REFERENCES

[44] S. Watt. Mashups – The evolution of the SOA, Part 1: Web 2.0

and foundational concepts. IBM developerWorks, October 2007. Avail-

able online: http://www.ibm.com/developerworks/webservices/library/

ws-soa-mashups/.

[45] A. Koschmider, V. Torres, and V. Pelechano. Elucidating the mashup

hype: Definition, challenges, methodical guide and tools for mashups.

In Proceedings of 18th International World Wide Web Conference, 2nd Work-

shop on Mashups, Enterprise Mashups and Lightweight Composition on the Web,

MEM ’09, pages 1–9, New York, NY, USA, 2009. ACM.

[46] Nan Z. and M. B. Rosson. What’s in a mashup? And why? Studying

the perceptions of web-active end-users. In Proceedings of the 2008 IEEE

Symposium on Visual Languages and Human-Centric Computing, VLHCC ’08,

pages 31–38, Washington, DC, USA, 2008. IEEE Computer Society.

[47] S. Bitzer, S. Ramroth, and M. Schumann. Mashups as an architecture

for knowledge management systems. In Proceedings of the 42nd Hawaii In-

ternational Conference on System Sciences, HICSS ’09, pages 1–10. IEEE Com-

puter Society, 2009.

[48] V. Hoyer and M. Fischer. Market overview of enterprise mashup tools.

In Proceedings of the 6th International Conference on Service-Oriented Comput-

ing, ICSOC ’08, pages 708–721, Berlin, Heidelberg, 2008. Springer-Verlag.

[49] V. Hoyer, K. Stanoesvka-Slabeva, T. Janner, and C. Schroth. Enter-

prise mashups: Design principles towards the long tail of user needs.

In Proceedings of IEEE International Conference on Services Computing, SCC

’08, pages 601–602, July 2008.

[50] A. Jhingran. Enterprise information mashups: Integrating informa-

tion, simply. In Proceedings of the 32nd international conference on Very large

data bases, VLDB ’06, pages 3–4. VLDB Endowment, 2006.

[51] E. Ort, S. Brydon, and M. Basler. Mashups styles, part 1: Server-side

mashups. Technical report, Sun Microsystems, Inc., Mountain View, CA, USA,

2007.

112

http://www.ibm.com/developerworks/webservices/library/ws-soa-mashups/
http://www.ibm.com/developerworks/webservices/library/ws-soa-mashups/
http://www.ibm.com/developerworks/webservices/library/ws-soa-mashups/
http://www.ibm.com/developerworks/webservices/library/ws-soa-mashups/
http://dx.doi.org/10.1109/VLHCC.2008.4639055
http://dx.doi.org/10.1109/VLHCC.2008.4639055
http://dblp.uni-trier.de/db/conf/hicss/hicss2009.html#BitzerRS09
http://dblp.uni-trier.de/db/conf/hicss/hicss2009.html#BitzerRS09
http://dx.doi.org/10.1007/978-3-540-89652-4_62
http://dl.acm.org/citation.cfm?id=1182635.1164128
http://dl.acm.org/citation.cfm?id=1182635.1164128
http://www.oracle.com/technetwork/articles/javaee/mashup-1-142202.html
http://www.oracle.com/technetwork/articles/javaee/mashup-1-142202.html

REFERENCES

[52] B. Biörnstad and C. Pautasso. Let it flow: Building mashups with data

processing pipelines. In E. Nitto and M. Ripeanu, editors, Service-Oriented

Computing – ICSOC 2007 Workshops, 4907 of Lecture Notes in Computer Sci-

ence, pages 15–28. Springer-Verlag, Berlin, Heidelberg, 2009.

[53] E. Ort, S. Brydon, and M. Basler. Mashups styles, part 2: Client-side

mashups. Technical report, Sun Microsystems, Inc., Mountain View, CA, USA,

2007.

[54] D. Crockford. The application/json Media Type for JavaScript Ob-

ject Notation (JSON). IETF, RFC 4627, July 2006.

[55] J. López, F. Bellas, A. Pan, and P. Montoto. A component-based

approach for engineering enterprise mashups. In Proceedings of the 9th

International Conference on Web Engineering, ICWE ’9, pages 30–44, Berlin,

Heidelberg, 2009. Springer-Verlag.

[56] Open Mashup Alliance. Enterprise Mashup Markup Language

(EMML). OMA EMML Documentation, September 2009. Available online:

http://www.openmashup.org/omadocs/v1.0/index.html.

[57] J. Clark and S. DeRose. XML path language (XPath) 1.0. W3C, Novem-

ber 1999. Available online: http://www.w3.org/TR/xpath/.

[58] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández, M. Kay,

J. Robie, and J. Siméon. XML path language (XPath) 2.0. W3C, De-

cember 2010. Available online: http://www.w3.org/TR/xpath20/.

[59] C. Shirky. Situated software, 2004. First published March 30, 2004 on

the “Networks, Economics, and Culture” mailing list. Available online: http:

//www.shirky.com/writings/situated_software.html.

[60] L. Richardson and S. Ruby. Restful Web Services. O’Reilly Media, Inc.,

Sebastopol, CA, USA, first edition, 2007.

[61] R. T. Fielding. Architectural styles and the design of network-based software

architectures. PhD thesis, University of California, Irvine, 2000.

113

http://dx.doi.org/10.1007/978-3-540-93851-4_3
http://dx.doi.org/10.1007/978-3-540-93851-4_3
http://www.oracle.com/technetwork/articles/javaee/mashup-2-140412.html
http://www.oracle.com/technetwork/articles/javaee/mashup-2-140412.html
http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc4627.txt
http://dx.doi.org/10.1007/978-3-642-02818-2_3
http://dx.doi.org/10.1007/978-3-642-02818-2_3
http://www.openmashup.org/omadocs/v1.0/index.html
http://www.openmashup.org/omadocs/v1.0/index.html
http://www.openmashup.org/omadocs/v1.0/index.html
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath20/
http://www.shirky.com/writings/situated_software.html
http://www.shirky.com/writings/situated_software.html

REFERENCES

[62] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,

and T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. IETF,

RFC 2616, June 1999. Available online: http://www.ietf.org/rfc/rfc2616.

txt.

[63] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions

(MIME) Part two: Media types. IETF, RFC 2046, November 1996. Up-

dated by RFCs 2646, 3798, 5147. Available online: http://www.ietf.org/rfc/

rfc2046.txt.

[64] J. E. White. High-level framework for network-based resource sharing.

IETF, RFC 707, December 1975. Available online: http://www.ietf.org/rfc/

rfc707.txt.

[65] S. Vinoski. Convenience over correctness. IEEE Internet Computing,

12(4):89–92, July 2008.

[66] F. Daniel, M. Matera, and M. Weiss. Next in mashup development:

User-created apps on the Web. IT Professional, 13(5):22–29, September

2011.

[67] W. Al Sarraj and O. De Troyer. Web mashup makers for casual

users: A user experiment. In Proceedings of the 12th International Conference

on Information Integration and Web-based Applications & Services, iiWAS ’10,

pages 239–246, New York, NY, USA, 2010. ACM.

[68] C. Cappiello, M. Matera, M. Picozzi, G. Sprega, D. Barbagallo, and

C. Francalanci. DashMash: A mashup environment for end-user de-

velopment. In Proceedings of the 11th international conference on Web engi-

neering, ICWE’11, pages 152–166, Berlin, Heidelberg, 2011. Springer-Verlag.

[69] J. Wong and J. I. Hong. Making mashups with Marmite: Towards end-

user programming for the Web. In Proceedings of the SIGCHI conference on

Human factors in computing systems, CHI ’07, pages 1435–1444, New York, NY,

USA, 2007. ACM.

114

http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc707.txt
http://www.ietf.org/rfc/rfc707.txt
http://www.ietf.org/rfc/rfc707.txt
http://dx.doi.org/10.1109/MIC.2008.75
http://doi.acm.org/10.1145/1967486.1967526
http://doi.acm.org/10.1145/1967486.1967526
http://dl.acm.org/citation.cfm?id=2027776.2027789
http://dl.acm.org/citation.cfm?id=2027776.2027789
http://doi.acm.org/10.1145/1240624.1240842
http://doi.acm.org/10.1145/1240624.1240842

REFERENCES

[70] J. Lin, J. Wong, J. Nichols, A. Cypher, and T. A. Lau. End-user

programming of mashups with Vegemite. In Proceedings of the 14th in-

ternational conference on Intelligent user interfaces, IUI ’09, pages 97–106, New

York, NY, USA, 2009. ACM.

[71] P. Baglietto, F. Cosso, M. Fornasa, S. Mangiante, M. Maresca,

A. Parodi, and M. Stecca. Always-on distributed spreadsheet mash-

ups. In Proceedings of the 3rd and 4th International Workshop on Web APIs and

Services Mashups, Mashups ’09/’10, pages 8:1–8:8, New York, NY, USA, 2010.

ACM.

[72] W. Kongdenfha, B. Benatallah, J. Vayssière, R. Saint-Paul, and

F. Casati. Rapid development of spreadsheet-based web mashups. In

Proceedings of the 18th international conference on World wide web, WWW ’09,

pages 851–860, New York, NY, USA, 2009. ACM.

[73] R. Tuchinda, P. Szekely, and C. A. Knoblock. Building mashups by

example. In Proceedings of the 13th international conference on Intelligent user

interfaces, IUI ’08, pages 139–148, New York, NY, USA, 2008. ACM.

[74] G. Wang, S. Yang, and Y. Han. A spreadsheet-like construct for

streamlining and reusing mashups. In Proceedings of The 9th International

Conference for Young Computer Scientists, ICYCS ’08, pages 880–885, Washing-

ton, DC, USA, November 2008. IEEE Computer Society.

[75] H. Lin, G. Wang, P. Zhang, J. Wang, and Y. Han. A two-level program-

ming model based on spreadsheet and data flow chart. In Proceedings of

the 7th Web Information Systems and Applications Conference, WISA ’10, pages

39–42, Washington, DC, USA, August 2010. IEEE Computer Society.

[76] Z. Pan, H. Tang, M. Ge, and C. Zhang. A framewok of spreadsheet-

based Web mashup. In Proceedings of International Conference on Computer

Science and Service System, CSSS ’11, pages 970–973, Washington, DC, USA,

June 2011. IEEE Computer Society.

115

http://doi.acm.org/10.1145/1502650.1502667
http://doi.acm.org/10.1145/1502650.1502667
http://doi.acm.org/10.1145/1944999.1945007
http://doi.acm.org/10.1145/1944999.1945007
http://doi.acm.org/10.1145/1526709.1526824
http://doi.acm.org/10.1145/1378773.1378792
http://doi.acm.org/10.1145/1378773.1378792

REFERENCES

[77] G. Wang, S. Yang, and Y. Han. Mashroom: End-user mashup program-

ming using nested tables. In Proceedings of the 18th international conference

on World wide web, WWW ’09, pages 861–870, New York, NY, USA, 2009. ACM.

[78] J. Cao, K. Rector, T. H. Park, S. D. Fleming, M. Burnett, and

S. Wiedenbeck. A debugging perspective on end-user mashup pro-

gramming. In Proceedings of the 2010 IEEE Symposium on Visual Languages

and Human-Centric Computing, VLHCC ’10, pages 149–156, Washington, DC,

USA, 2010. IEEE Computer Society.

[79] R. Ennals, E. Brewer, M. Garofalakis, M. Shadle, and P. Gandhi.

Intel Mash Maker: Join the Web. ACM SIGMOD Record, 36(4):27–33,

December 2007.

[80] K. T. Stolee and S. Elbaum. Refactoring pipe-like mashups for end-

user programmers. In Proceedings of the 33rd International Conference on

Software Engineering, ICSE ’11, pages 81–90, New York, NY, USA, 2011. ACM.

[81] G. Leshed, E. M. Haber, T. Matthews, and T. Lau. CoScripter: Au-

tomating & sharing how-to knowledge in the enterprise. In Proceedings

of the twenty-sixth annual SIGCHI conference on Human factors in computing

systems, CHI ’08, pages 1719–1728, New York, NY, USA, 2008. ACM.

[82] R. Guo, B. B. Zhu, M. Feng, A. Pan, and B. Zhou. Compoweb: A

component-oriented web architecture. In Proceedings of the 17th interna-

tional conference on World Wide Web, WWW ’08, pages 545–554, New York,

NY, USA, 2008. ACM.

[83] D. Crockford. The <module> tag, October 2006. Available online: http:

//json.org/module.html.

[84] J. Howell, C. Jackson, H. J. Wang, and X. Fan. MashupOS: Operating

system abstractions for client mashups. In Proceedings of the 11th USENIX

workshop on Hot topics in operating systems, pages 16:1–16:7, Berkeley, CA,

USA, 2007. USENIX Association.

116

http://doi.acm.org/10.1145/1526709.1526825
http://doi.acm.org/10.1145/1526709.1526825
http://dx.doi.org/10.1109/VLHCC.2010.29
http://dx.doi.org/10.1109/VLHCC.2010.29
http://doi.acm.org/10.1145/1361348.1361355
http://doi.acm.org/10.1145/1985793.1985805
http://doi.acm.org/10.1145/1985793.1985805
http://doi.acm.org/10.1145/1357054.1357323
http://doi.acm.org/10.1145/1357054.1357323
http://doi.acm.org/10.1145/1367497.1367571
http://doi.acm.org/10.1145/1367497.1367571
http://json.org/module.html
http://json.org/module.html
http://json.org/module.html
http://dl.acm.org/citation.cfm?id=1361397.1361413
http://dl.acm.org/citation.cfm?id=1361397.1361413

REFERENCES

[85] S. Crites, F. Hsu, and H. Chen. OMash: Enabling secure web mash-

ups via object abstractions. In Proceedings of the 15th ACM conference on

Computer and communications security, CCS ’08, pages 99–108, New York, NY,

USA, 2008. ACM.

[86] C. Jackson and H. J. Wang. Subspace: Secure cross-domain communi-

cation for web mashups. In Proceedings of the 16th international conference

on World Wide Web, WWW ’07, pages 611–620, New York, NY, USA, 2007.

ACM.

[87] F. De Keukelaere, S. Bhola, M. Steiner, S. Chari, and S. Yoshihama.

SMash: Secure component model for cross-domain mashups on un-

modified browsers. In Proceedings of the 17th international conference on

World Wide Web, WWW ’08, pages 535–544, New York, NY, USA, 2008. ACM.

[88] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Iden-

tifier (URI): Generic syntax. IETF, RFC 3986, January 2005. Available

online: http://www.ietf.org/rfc/rfc3986.txt.

[89] J. Magazinius, A. Askarov, and A. Sabelfeld. A lattice-based ap-

proach to mashup security. In Proceedings of the 5th ACM Symposium on

Information, Computer and Communications Security, ASIACCS’10, pages 15–

23, New York, NY, USA, 2010. ACM.

[90] S. Ikeda, T. Nagamine, and T. Kamada. Application framework with

demand-driven mashup for selective browsing. In Proceedings of the 10th

International Conference on Information Integration and Web-based Applications

& Services, iiWAS’08, pages 33–40, New York, NY, USA, 2008. ACM.

[91] R. Hashimoto, N. Ueno, and M. Shimomura. A design of usable and

secure access-control APIs for mashup applications. In Proceedings of the

5th ACM workshop on Digital identity management, DIM’09, pages 31–34, New

York, NY, USA, 2009. ACM.

[92] M. Ogrinz. Mashup Patterns: Designs and Examples for the Modern Enterprise.

Addison-Wesley Professional, first edition, 2009.

117

http://doi.acm.org/10.1145/1455770.1455784
http://doi.acm.org/10.1145/1455770.1455784
http://doi.acm.org/10.1145/1242572.1242655
http://doi.acm.org/10.1145/1242572.1242655
http://doi.acm.org/10.1145/1367497.1367570
http://doi.acm.org/10.1145/1367497.1367570
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt
http://doi.acm.org/10.1145/1755688.1755691
http://doi.acm.org/10.1145/1755688.1755691
http://doi.acm.org/10.1145/1497308.1497319
http://doi.acm.org/10.1145/1497308.1497319
http://doi.acm.org/10.1145/1655028.1655037
http://doi.acm.org/10.1145/1655028.1655037

REFERENCES

[93] T. Mikkonen, A. Taivalsaari, and M. Terho. Lively for Qt: A plat-

form for mobile web applications. In Proceedings of the 6th International

Conference on Mobile Technology, Application & Systems, Mobility ’09, pages

24:1–24:8, New York, NY, USA, 2009. ACM.

[94] H. Saiedian and D. Broyle. Security vulnerabilities in the same-

origin policy: Implications and alternatives. IEEE Computer, 44(9):29–36,

September 2011.

[95] A. van Kesteren. Cross-Origin Resource Sharing. W3C, April 2012.

Available online: http://www.w3.org/TR/cors/.

[96] C. Marrin. WebGL specification 1.0. Khronos Group, February 2011. Avail-

able online: https://www.khronos.org/registry/webgl/specs/1.0/.

[97] S. Aghaee and C. Pautasso. Mashup development with HTML5. In

Proceedings of the 3rd and 4th International Workshop on Web APIs and Services

Mashups, Mashups ’09/’10, pages 10:1–10:8, New York, NY, USA, 2010. ACM.

[98] J. Bosch. From software product lines to software ecosystems. In Pro-

ceedings of the 13th International Software Product Line Conference, SPLC ’09,

pages 111–119, Pittsburgh, PA, USA, 2009. Carnegie Mellon University.

[99] S. Yu and C. J. Woodard. Innovation in the programmable Web: Char-

acterizing the mashup ecosystem. In G. Feuerlicht and W. Lamers-

dorf, editors, Workshop Proceedings of the 6th International Conference on Ser-

vice Oriented Computing, ICSOC ’08, pages 136–147. Springer-Verlag, Berlin,

Heidelberg, 2009.

[100] M. Weiss and S. Sari. Evolution of the mashup ecosystem by copying.

In Proceedings of the 3rd and 4th International Workshop on Web APIs and

Services Mashups, Mashups ’09/’10, pages 11:1–11:7, New York, NY, USA, 2010.

ACM.

[101] J. Cao, Y. Riche, S. Wiedenbeck, M. Burnett, and V. Grigoreanu.

End-user mashup programming: Through the design lens. In Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’10,

pages 1009–1018, New York, NY, USA, 2010. ACM.

118

http://doi.acm.org/10.1145/1710035.1710059
http://doi.acm.org/10.1145/1710035.1710059
http://dx.doi.org/10.1109/MC.2011.226
http://dx.doi.org/10.1109/MC.2011.226
http://www.w3.org/TR/cors/
http://www.w3.org/TR/cors/
https://www.khronos.org/registry/webgl/specs/1.0/
https://www.khronos.org/registry/webgl/specs/1.0/
http://doi.acm.org/10.1145/1944999.1945009
http://dl.acm.org/citation.cfm?id=1753235.1753251
http://dx.doi.org/10.1007/978-3-642-01247-1_13
http://dx.doi.org/10.1007/978-3-642-01247-1_13
http://doi.acm.org/10.1145/1944999.1945010
http://doi.acm.org/10.1145/1753326.1753477

REFERENCES

[102] M. Weiss and G. R. Gangadharan. Modeling the mashup ecosystem:

Structure and growth. R&D Management, 40(1):40–49, 2010.

[103] L. F. Cooper and S. Lee. Mashups in the enterprise IT environment.

Technical report, BizTechReports.Com, Rockville, MD, USA, 2010. Available

online: http://www.jackbe.com/resources/whitepapers-ebooks.

[104] E. Hammer-Lahav. The OAuth 1.0 protocol. IETF, RFC 5849 (Informa-

tional), April 2010. Available online: http://www.ietf.org/rfc/rfc5849.txt.

[105] I. Khan, M. Nauman, M. Alam, and F. Aziz. SAuthMash: Mobile agent

based self authorization in mashups. In Proceedings of the 7th International

Conference on Frontiers of Information Technology, FIT ’09, pages 41:1–41:6,

New York, NY, USA, 2009. ACM.

[106] S. Zarandioon, D. Yao, and V. Ganapathy. Privacy-aware identity

management for client-side mashup applications. In Proceedings of the

5th ACM workshop on Digital identity management, DIM’09, pages 21–30, New

York, NY, USA, 2009. ACM.

[107] M. Alam, X. Zhang, K. Khan, and G. Ali. xDAuth: A scalable and

lightweight framework for cross domain access control and delegation.

In Proceedings of the 16th ACM symposium on Access control models and tech-

nologies, SACMAT ’11, pages 31–40, New York, NY, USA, 2011. ACM.

[108] S. Deering and R. Hinden. Internet Protocol, version 6 (IPv6) specifi-

cation. IETF, RFC 2460 (Draft Standard), December 1998. Updated by RFCs

5095, 5722, 5871, 6437. Available online: http://www.ietf.org/rfc/rfc2460.

txt.

[109] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach,

A. Luotonen, and L. Stewart. HTTP authentication: Basic and di-

gest access authentication. IETF, RFC 2617 (Draft Standard), June 1999.

Available online: http://www.ietf.org/rfc/rfc2617.txt.

[110] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE

Transactions on Information Theory, 22(6):644–654, November 1976.

119

http://dx.doi.org/10.1111/j.1467-9310.2009.00582.x
http://dx.doi.org/10.1111/j.1467-9310.2009.00582.x
http://www.jackbe.com/resources/whitepapers-ebooks
http://www.ietf.org/rfc/rfc5849.txt
http://www.ietf.org/rfc/rfc5849.txt
http://doi.acm.org/10.1145/1838002.1838049
http://doi.acm.org/10.1145/1838002.1838049
http://doi.acm.org/10.1145/1655028.1655036
http://doi.acm.org/10.1145/1655028.1655036
http://doi.acm.org/10.1145/1998441.1998447
http://doi.acm.org/10.1145/1998441.1998447
http://www.ietf.org/rfc/rfc2460.txt
http://www.ietf.org/rfc/rfc2460.txt
http://www.ietf.org/rfc/rfc2460.txt
http://www.ietf.org/rfc/rfc2460.txt
http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2617.txt
http://www.cs.purdue.edu/homes/ninghui/courses/Fall04/lectures/diffie-hellman.pdf

REFERENCES

[111] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. The Kerberos net-

work authentication service (V5). IETF, RFC 4120 (Proposed Standard),

July 2005. Updated by RFCs 4537, 5021, 5896, 6111, 6112, 6113. Available online:

http://www.ietf.org/rfc/rfc4120.txt.

[112] J. Klensin, R. Catoe, and P. Krumviede. IMAP/POP AUTHorize

extension for simple challenge/response. IETF, RFC 2195 (Proposed Stan-

dard), September 1997. Available online: http://www.ietf.org/rfc/rfc2195.

txt.

[113] B. Hartmann, S. Doorley, and S. R. Klemmer. Hacking, mashing,

gluing: Understanding opportunistic design. IEEE Pervasive Computing,

7(3):46–54, July 2008.

[114] S. Govardhan and G. Feuerlicht. Itinerary planner: A mashup case

study. In E. Di Nitto and M. Ripeanu, editors, Proceedings of International

Conference on Service Oriented Computing Workshops, 4907 of Lecture Notes

in Computer Science, pages 3–14. Springer, 2007.

[115] Y. Liu, X. Liang, and L. Zhu. A component-based approach to de-

veloping thematic mashups. In Proceedings of the 20th Australian Software

Engineering Conference, ASWEC ’09, Los Alamitos, CA, USA, April 2009. IEEE

Computer Society.

[116] A. Taivalsaari and T. Mikkonen. Mashups and modularity: Towards

secure and reusable web applications. In Proceedings of 23rd IEEE/ACM

International Conference on Automated Software Engineering Workshops, ASE

’08, pages 25–33, Los Alamitos, CA, USA, September 2008. IEEE Computer

Society.

[117] J. López, A. Pan, F. Bellas, and P. Montoto. Towards a reference

architecture for enterprise mashups. In Actas de los Talleres de las Jornadas

de Ingenieŕıa del Software y Bases de Datos, 2 of SISTEDES ’08, pages 67–76,

2008.

120

http://www.ietf.org/rfc/rfc4120.txt
http://www.ietf.org/rfc/rfc4120.txt
http://www.ietf.org/rfc/rfc4120.txt
http://www.ietf.org/rfc/rfc2195.txt
http://www.ietf.org/rfc/rfc2195.txt
http://www.ietf.org/rfc/rfc2195.txt
http://www.ietf.org/rfc/rfc2195.txt
http://dx.doi.org/10.1109/MPRV.2008.54
http://dx.doi.org/10.1109/MPRV.2008.54

REFERENCES

[118] G. Bader, A. Anjomshoaa, and A. M. Tjoa. Privacy aspects of mashup

architecture. In Proceedings of the 2010 IEEE Second International Confer-

ence on Social Computing, SOCIALCOM ’10, pages 1141–1146, Washington, DC,

USA, 2010. IEEE Computer Society.

[119] ISO/IEC/(IEEE). IEEE recommended practice for architectural de-

scription of software-intensive systems. IEEE Std 1471-2000, pages 1–23,

August 2002.

[120] G. Krasner and S. Pope. A description of the Model-View-Controller

user interface paradigm in the Smalltalk-80 system. Journal of Object

Oriented Programming, 1(3):26–49, 1988.

[121] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead, and

J. E. Robbins. A component- and message-based architectural style for

GUI software. In Proceedings of the 17th international conference on Software

engineering, ICSE ’95, pages 295–304, New York, NY, USA, 1995. ACM.

[122] W. W. Eckerson. Three-tier client/server architecture: Achieving scal-

ability, performance, and efficiency in client–server applications. Open

Information Systems, 10(1), January 1995.

[123] T. Reenskaug. Models-views-controllers. Technical note, Xerox PARC,

December 1979.

[124] T. Reenskaug. THING-MODEL-VIEW-EDITOR: An example from a

planning system. Technical note, Xerox PARC, May 1979.

[125] D. Crockford. JavaScript: The Good Parts. O’Reilly Media, Inc., Sebastopol,

CA, USA, 2008.

[126] S. Stefanov. JavaScript Patterns – Build Better Applications with Coding and

Design Patterns. O’Reilly Media, Inc., Sebastopol, CA, USA, 2010.

[127] C. Cappiello, F. Daniel, and M. Matera. A qality model for mashup

components. In Proceedings of the 9th International Conference on Web Engi-

neering, ICWE ’9, pages 236–250, Berlin, Heidelberg, 2009. Springer-Verlag.

121

http://dx.doi.org/10.1109/SocialCom.2010.169
http://dx.doi.org/10.1109/SocialCom.2010.169
http://citeseer.ist.psu.edu/krasner88description.html
http://citeseer.ist.psu.edu/krasner88description.html
http://doi.acm.org/10.1145/225014.225042
http://doi.acm.org/10.1145/225014.225042
http://heim.ifi.uio.no/~trygver/1979/mvc-2/1979-12-MVC.pdf
http://dx.doi.org/10.1007/978-3-642-02818-2_19
http://dx.doi.org/10.1007/978-3-642-02818-2_19

REFERENCES

[128] C. Cappiello, F. Daniel, M. Matera, and C. Pautasso. Information

quality in mashups. IEEE Internet Computing, 14(4):14–22, July 2010.

[129] S. Artzi, J. Dolby, S. H. Jensen, A. Møller, and F. Tip. A framework

for automated testing of JavaScript web applications. In Proceedings

of the 33rd International Conference on Software Engineering, ICSE ’11, pages

571–580, New York, NY, USA, 2011. ACM.

[130] V. Dallmeier, M. Burger, T. Orth, and A. Zeller. WebMate: a tool

for testing Web 2.0 applications. In Proceedings of the Workshop on Java-

Script Tools, JSTools ’12, pages 11–15, New York, NY, USA, 2012. ACM.

[131] R. M. Lerner. At the forge: Testing JavaScript. Linux Journal, (191),

March 2010.

[132] K. Väänänen-Vainio-Mattila and M. Wäljas. Towards user-centered

mashups: Exploring user needs for composite web services. In CHI ’11

Extended Abstracts on Human Factors in Computing Systems, CHI EA ’11, pages

1327–1332, New York, NY, USA, 2011. ACM.

[133] P. van Schaik and J. Ling. The role of context in perceptions of the aes-

thetics of web pages over time. International Journal of Human-Computer

Studies, 67(1):79–89, January 2009.

[134] G. Lindgaard, G. Fernandes, C. Dudek, and J. Brown. Attention web

designers: You have 50 milliseconds to make a good first impression!

Behaviour & Information Technology, 25(2):115–126, April 2006.

[135] E. R. Tufte. The visual display of quantitative information. Graphics Press,

Cheshire, CT, USA, 1986.

[136] H. J. Wang, X. Fan, J. Howell, and C. Jackson. Protection and com-

munication abstractions for web browsers in MashupOS. In Proceedings

of twenty-first ACM SIGOPS symposium on Operating systems principles, SOSP

’07, pages 1–16, New York, NY, USA, 2007. ACM.

122

http://dx.doi.org/10.1109/MIC.2010.60
http://dx.doi.org/10.1109/MIC.2010.60
http://doi.acm.org/10.1145/1985793.1985871
http://doi.acm.org/10.1145/1985793.1985871
http://doi.acm.org/10.1145/2307720.2307722
http://doi.acm.org/10.1145/2307720.2307722
http://dl.acm.org/citation.cfm?id=1739152.1739158
http://doi.acm.org/10.1145/1979742.1979769
http://doi.acm.org/10.1145/1979742.1979769
http://dx.doi.org/10.1080/01449290500330448
http://dx.doi.org/10.1080/01449290500330448
http://doi.acm.org/10.1145/1294261.1294263
http://doi.acm.org/10.1145/1294261.1294263

REFERENCES

[137] D. Liu, N. Li, C. Pedrinaci, J. Kopecký, M. Maleshkova, and

J. Domingue. An approach to construct dynamic service mashups using

lightweight semantics. In Proceedings of the 11th international conference on

Current Trends in Web Engineering, ICWE’11, pages 13–24, Berlin, Heidelberg,

2012. Springer-Verlag.

[138] L. Dusseault and J. Shell. PATCH method for HTTP. IETF, RFC 5789,

March 2010. Available online: https://tools.ietf.org/html/rfc5789.

[139] H. Pennington, A. Carlsson, A. Larsson, S. Herzberg, S. McVit-

tie, and D. Zeuthen. D-Bus Specification version 0.19. freedesk-

top.org, February 2012. Available online: http://dbus.freedesktop.org/doc/

dbus-specification.html.

[140] D. Crane and P. McCarthy. Comet and reverse Ajax: The next-generation

Ajax 2.0. Apress, Berkely, CA, USA, 2008.

[141] A. Russell, G. Wilkins, D. Davis, and M. Nesbitt. Bayeux protocol

– Bayeux 1.0.0. The Bayeux Specification, 2007. Available online: http:

//svn.cometd.org/trunk/bayeux/bayeux.html.

[142] I. Paterson, D. Smith, P. Saint-Andre, and J. Moffitt. XEP-0124:

Bidirectional-streams over synchronous HTTP (BOSH). XMPP Stan-

dards Foundation, July 2010. Available online: http://xmpp.org/extensions/

xep-0124.html.

[143] E.M. Maximilien. Mobile mashups: Thoughts, directions, and chal-

lenges. In Proceedings of the 2008 IEEE International Conference on Semantic

Computing, ICSC ’08, pages 597–600, Washington, DC, USA, 2008. IEEE Com-

puter Society.

[144] S. Block and A. Popescu. DeviceOrientation event specifica-

tion. W3C, December 2011. Available online: http://www.w3.org/TR/

orientation-event/.

[145] A. Popescu. Geolocation API specification. Last call WD, May 2012.

Available online: http://www.w3.org/TR/geolocation-API/.

123

http://dx.doi.org/10.1007/978-3-642-27997-3_2
http://dx.doi.org/10.1007/978-3-642-27997-3_2
http://tools.ietf.org/html/rfc5789
https://tools.ietf.org/html/rfc5789
http://dbus.freedesktop.org/doc/dbus-specification.html
http://dbus.freedesktop.org/doc/dbus-specification.html
http://svn.cometd.org/trunk/bayeux/bayeux.html
http://svn.cometd.org/trunk/bayeux/bayeux.html
http://svn.cometd.org/trunk/bayeux/bayeux.html
http://svn.cometd.org/trunk/bayeux/bayeux.html
http://xmpp.org/extensions/xep-0124.html
http://xmpp.org/extensions/xep-0124.html
http://xmpp.org/extensions/xep-0124.html
http://xmpp.org/extensions/xep-0124.html
http://dx.doi.org/10.1109/ICSC.2008.100
http://dx.doi.org/10.1109/ICSC.2008.100
http://www.w3.org/TR/orientation-event/
http://www.w3.org/TR/orientation-event/
http://www.w3.org/TR/orientation-event/
http://www.w3.org/TR/orientation-event/
http://www.w3.org/TR/geolocation-API/
http://www.w3.org/TR/geolocation-API/

REFERENCES

[146] J. Warner and S. A. Chun. A citizen privacy protection model for

e-government mashup services. In Proceedings of the 2008 international

conference on Digital government research, dg.o ’08, pages 188–196. Digital Gov-

ernment Society of North America, 2008.

[147] S. Van Acker, P. De Ryck, L. Desmet, F. Piessens, and W. Joosen.

WebJail: Least-privilege integration of third-party components in web

mashups. In Proceedings of the 27th Annual Computer Security Applications

Conference, ACSAC ’11, pages 307–316, New York, NY, USA, 2011. ACM.

[148] F. Batard, K. Boudaoud, and M. Riveill. A middleware for securing

mobile mashups. In Proceedings of the 20th international conference companion

on World wide web, WWW ’11, pages 9–10, New York, NY, USA, 2011. ACM.

[149] A. Bohannon. Building secure web mashups, 2008. Available online: http:

//www.cis.upenn.edu/~bohannon/mashups.pdf.

[150] OpenAjax Alliance. Ajax and mashup security. White pa-

per, 2010. Available online: http://www.openajax.org/whitepapers/

AjaxandMashupSecurity.php.

[151] S. Yoshihama, F. D. Keukelaere, M. Steiner, and N. Uramoto.

Overcome security threats for Ajax applications. IBM developerWorks,

2007. Available online: http://www.ibm.com/developerworks/library/

x-ajaxsecurity/index.html.

[152] J. Shanmugam and M. Ponnavaikko. Cross-site Scripting – Latest de-

velopments and solutions: A survey. International journal of Open Problems

in Computer Science and Mathematics, 1(2):8–28, September 2008.

[153] S. Fogie, J. Grossman, R. Hansen, A. Rager, and P. D. Petkov. XSS At-

tacks: Cross-Site Scripting Exploits and Defense. Syngress Publishing, Waltham,

MA, USA, 2007.

[154] A. Barth, C. Jackson, and J. C. Mitchell. Robust defenses for cross-

site request forgery. In Proceedings of the 15th ACM conference on Computer

and communications security, CCS ’08, pages 75–88, New York, NY, USA, 2008.

ACM.

124

http://dl.acm.org/citation.cfm?id=1367832.1367866
http://dl.acm.org/citation.cfm?id=1367832.1367866
http://doi.acm.org/10.1145/2076732.2076775
http://doi.acm.org/10.1145/2076732.2076775
http://doi.acm.org/10.1145/1963192.1963198
http://doi.acm.org/10.1145/1963192.1963198
http://www.cis.upenn.edu/~bohannon/mashups.pdf
http://www.cis.upenn.edu/~bohannon/mashups.pdf
http://www.cis.upenn.edu/~bohannon/mashups.pdf
http://www.openajax.org/whitepapers/Ajax and Mashup Security.php
http://www.openajax.org/whitepapers/Ajax and Mashup Security.php
http://www.openajax.org/whitepapers/Ajax and Mashup Security.php
http://www.ibm.com/developerworks/library/x-ajaxsecurity/index.html
http://www.ibm.com/developerworks/library/x-ajaxsecurity/index.html
http://www.ibm.com/developerworks/library/x-ajaxsecurity/index.html
http://www.emis.ams.org/journals/IJOPCM/files/IJOPCM%28Vol.1.2.2.S.08%29.pdf
http://www.emis.ams.org/journals/IJOPCM/files/IJOPCM%28Vol.1.2.2.S.08%29.pdf
http://doi.acm.org/10.1145/1455770.1455782
http://doi.acm.org/10.1145/1455770.1455782

REFERENCES

[155] R. Pelizzi and R. Sekar. A server- and browser-transparent CSRF de-

fense for Web 2.0 applications. In Proceedings of the 27th Annual Computer

Security Applications Conference, ACSAC ’11, pages 257–266, New York, NY,

USA, 2011. ACM.

[156] B. Chess, Y. T. O’Neil, and J. West. JavaScript hijacking. Techni-

cal report, FORTIFY Software, March 2007. Available online: http://www.

net-security.org/dl/articles/JavaScript_Hijacking.pdf.

[157] W. Zeller and E. W. Felten. Cross-Site Request Forgeries: Exploita-

tion and prevention, October 2008. Available online: https://www.eecs.

berkeley.edu/~daw/teaching/cs261-f11/reading/csrf.pdf.

[158] C. Jackson, A. Barth, A. Bortz, W. Shao, and D. Boneh. Protecting

browsers from DNS rebinding attacks. ACM Transactions on the Web,

3(1):2:1–2:26, January 2009.

[159] I. Hickson. HTML5 Web Messaging. W3C, December 2012. Available

online: http://dev.w3.org/html5/postmsg/.

[160] M. D. McIlroy. Mass-produced software components. In Proceedings of

NATO Conference on Software Engineering, pages 88–98, October 1968.

[161] J. Hendler. Web 3.0 emerging. IEEE Computer, 42(1):111–113, January

2009.

[162] J. M. Silva, A. S. Md. Mahfujur Rahman, and A. El Saddik. Web 3.0:

A vision for bridging the gap between real and virtual. In Proceedings of

the 1st ACM international workshop on Communicability design and evaluation

in cultural and ecological multimedia system, CommunicabilityMS ’08, pages 9–

14, New York, NY, USA, 2008. ACM.

[163] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Sci-

entific American, 284(5):34–43, May 2001.

[164] N. Shadbolt, T. Berners-Lee, and W. Hall. The semantic web revis-

ited. IEEE Intelligent Systems, 21(3):96–101, May 2006.

125

http://doi.acm.org/10.1145/2076732.2076768
http://doi.acm.org/10.1145/2076732.2076768
http://www.net-security.org/dl/articles/JavaScript_Hijacking.pdf
http://www.net-security.org/dl/articles/JavaScript_Hijacking.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.147.1445
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.147.1445
https://www.eecs.berkeley.edu/~daw/teaching/cs261-f11/reading/csrf.pdf
https://www.eecs.berkeley.edu/~daw/teaching/cs261-f11/reading/csrf.pdf
http://doi.acm.org/10.1145/1462148.1462150
http://doi.acm.org/10.1145/1462148.1462150
http://dev.w3.org/html5/postmsg/
http://doi.acm.org/10.1145/1462039.1462042
http://doi.acm.org/10.1145/1462039.1462042
http://dx.doi.org/10.1109/MIS.2006.62
http://dx.doi.org/10.1109/MIS.2006.62

REFERENCES

[165] R. MacManus. Eric Schmidt defines Web 3.0. ReadWrite Blog, Au-

gust 2007. Available online: http://www.readwriteweb.com/archives/eric_

schmidt_defines_web_30.php.

[166] I. Hickson. Web workers. W3C, May 2012. Available online: http://www.

w3.org/TR/workers/.

[167] T. Mikkonen and A. Taivalsaari. Apps vs. open web: The battle of

the decade. In Proceedings of the 2nd Workshop on Software Engineering for

Mobile Application Development, MSE’2011, pages 22–26, October 2011.

[168] L. D. Paulson. Developers shift to dynamic programming languages.

IEEE Computer, 40(2):12–15, February 2007.

126

http://www.readwriteweb.com/archives/eric_schmidt_defines_web_30.php
http://www.readwriteweb.com/archives/eric_schmidt_defines_web_30.php
http://www.w3.org/TR/workers/
http://www.w3.org/TR/workers/
http://www.mobileseworkshop.org/papers/6-Mikkonen_Taivalsaari.pdf
http://www.mobileseworkshop.org/papers/6-Mikkonen_Taivalsaari.pdf
http://dx.doi.org/10.1109/MC.2007.53

Publication I

Mashups – Software ecosystems
for the web era

A. Salminen and T. Mikkonen

c©2012 CEUR Workshop Proceedings. Reprinted with permission, from the
Proceedings of ICSOB’2012 4th International Workshop on Software
Ecosystems (IWSECO 2012).

Mashups – Software Ecosystems for the Web Era

Arto Salminen, Tommi Mikkonen

Department of Software Systems
Tampere University of Technology

P.O.Box 553, FI-33101 Tampere, Finland
arto.salminen@tut.fi, tommi.mikkonen@tut.fi

Abstract. Web-based software and services are available all over the
world instantly after they are released online. They can be used and
updated without need to install anything, and once in place, they can
also be reused in other contexts. As the amount of web services and
devices used to consume data has exploded, it is becoming difficult to
handle and gain access to the relevant data. Mashups are a new breed of
web applications that act as content aggregates that leverage the power
of the Web to support instant, worldwide sharing of content. Another
dimension of mashups is that since they build on services that are readily
available, they are also implicitly creating software ecosystems between
service providers and application developers. In this paper, we address
the role of mashups in the creation of software ecosystems for the web era.
In addition, we identify four levels of support that service providers can
offer for mashups. Furthermore, we will also discuss the different flavors
of mashups as well as implementation considerations that are relevant
from the ecosystem perspective.

Key words: Mashups, web applications, software ecosystems

1 Introduction

The web-based software is available all over the world instantly after the online
release. It can be used and updated without need to install anything. Applica-
tions can support user collaboration, i.e., allow users to interact and share the
same applications over the Web. In addition, numerous web services allowing
users to upload, download, store and modify private and public resources have
emerged. These resources can include personal images, texts, videos, e-mails,
etc. as well as public data such as stock quotes, weather data and news feeds.

As the amount of web services and devices used to consume data has ex-
ploded, it is difficult to handle and gain access to the relevant data. To be able
to handle the situation, searching has become one of the most important ser-
vice of the Web. However, searching can be used only for data accessing, not
for analyzing or parsing it. Similarly to resources, communication has decentral-
ized into different services such as e-mail, different social media services, instant
messaging services, chats, blogs, etc. Therefore, new mechanisms are needed for
resource handling and communication services of the Web.

Proceedings of IWSECO 2012 18

arto.salminen@tut.fi
tommi.mikkonen@tut.fi

An important realization is that applications built on top of the Web do not
have to live by the same constraints that have characterized the evolution of
conventional desktop software. The ability to dynamically combine content from
numerous web sites and local resources, and the ability to instantly publish
services worldwide has opened up entirely new possibilities for software devel-
opment. In general, such systems are referred to as mashups, which are content
aggregates that leverage the power of the Web to support instant, worldwide
sharing of content.

In this paper, we address the role of mashups in the creation of implicit and
explicit software ecosystems [1] for the web era. We perform this in the following
fashion. Section 2 provides an overview to mashups and the potential associated
with mashup development. Section 3 discusses mashup ecosystems from the view-
point of already existing research as well as challenges we have encountered in
practice. In addition, this section identifies the four levels of support that ser-
vice providers can offer for mashups, and discusses the associated consequences
of each approach. Section 4 discusses the different breeds and types of mashup
ecosystems that have been introduced, and Section 5 discusses implementation
considerations. Finally, Section 6 draws some final conclusions.

2 Mashups: An Overview

Mashups can be characterized as applications that combine resources – data,
code and other content – from different services in the Web into an integrated
experience. Mashups can combine the content in new, unforeseen ways, thus
creating entirely new web services, or they can provide new visualizations for
already existing service. For instance, a mashup can combine a map with images
that can be attached to specific locations. Another type of mashup can visualize
the images in novel fashion, for example on a timeline or as a collage.

Mashups have potential for great user experiences, as they include more func-
tions than just composition. Mashups can be used to filter, combine and modify
data retrieved from multiple sources over the Web. Combining web resources
into mashups is an efficient way to create new services or extract relevant infor-
mation from a complex mixture of source data. Even unexpected innovations are
possible as mashups can combine resources in unforeseen fashion. Furthermore,
mashups are even more usable when non-technical users can create them with
special purpose tools and have their own views for data. This is very inspiring
part of mashups as it allows creative users to design their own applications that
are capable of doing unexpected things. Allowing “do-it-yourself” mashups serve
the long tail of users having diverse needs that are not fulfilled by existing appli-
cations or services. On embedded devices, mobile devices being at the forefront,
mashups can benefit from accessing the user’s context to combine resources,
potentially automatically.

Well-build mashups have functionality for filtering source data. By having
adjustable filters a mashup can provide more relevant results. Filters can be
based on much more relevant variables than manually entered limits such as the

Proceedings of IWSECO 2012 19

highest and the lowest price of a product. Such filters can be time of the day,
location of the user, past activity of the user, activity of other users (trends),
profile setting of users mobile device, etc. Heavy processing, e.g. filtering images
with face detection algorithm, can be executed on the server, using MashReduce
programming model [2], for instance.

Different kinds of dependability mechanisms play an important role in a
mashup. At least the mashup should be implemented so that it checks whether
the input data is correct. More sophisticated mashups can have fall-back mech-
anisms that, instead just giving up on error, try to use next best strategy to
ensure even partial functionality. Furthermore, mashups can have controlling
mechanisms that supervise the functionality and replace failing parts with other
ones. In addition, mashups can have capabilities to extract the result mashup to
some external viewing device and change the user interface of the mashup ac-
cordingly. For instance, this enables the creation of a mashup in a mobile device
whereas the resulting output can be shown on a bigger screen if one is available.

3 Mashup Ecosystems

Since mashups by definition combine data from multiple sources, the stakehold-
ers that provide this data form an ecosystem, i.e. a set of entities that act as a
single unit instead of each participating business acting separately. This ecosys-
tem – formed by service providers, mashup authors, and users as visualized in
Fig. 1 – need not be controlled by a central authority. In contrast, even though
mashup authors and service providers may have an explicit service level agree-
ments (SLA), it is common that mashups are developed without such contracts,
and the ecosystem is formed implicitly. For instance, one can build a mashup on
top of services freely available in the web with liberal enough licenses. In a broad
sense, any web document author can be considered as a service provider, as it
is common that content is gathered from web sites by technique called “screen
scraping” or “web scraping”, where source data is parsed from HTML pages
aimed at human readers.

In the following we will first provide some background information regarding
mashup ecosystems, and then advance to some challenges associated with the
establishment of new mashup ecosystems.

3.1 Background

Yu and Woodard [3] have described mashup ecosystems by using the Pro-
grammableWeb mashup indexing service (http://www.programmableweb.com/)
data as source. They investigate the structure and dynamics of the Web 2.0
ecosystems by analyzing the data available about mashups and APIs. The first
finding was that at the time of the study APIs were organized into three tiers,
which were 1) the most popular API (Google Maps), 2) popular APIs (many
APIs used for social services and searching) and 3) less popular APIs (APIs often

Proceedings of IWSECO 2012 20

http://www.programmableweb.com/

Fig. 1. Mashup Ecosystem

used for blogging, online retail, music, videos and feeds). The second finding was
that mashups are often composed by combining APIs across tiers. This high-
lights the central role of the most popular APIs, but also reveals the importance
of less popular APIs in dilution of the ecosystem. Many of the third tier APIs
bring together novel combinations of functionality. Another interesting finding
is that in contrast to what has been suggested [4], there is no long tail of ser-
vices that would form a basis for a significant number of mashups. Instead, Yu
and Woodart noticed that 95% of mashups are build on 20% of services, which
is much more than in the famous Pareto Principle, or 80/20 rule as it is often
called. Moreover, they noted that 51% of services were not used by mashups at
all. However, one should bear in mind that Yu’s and Woodard’s data source, Pro-
grammableWeb, lists only those services and mashups that have been added to
it by developers. Therefore there are services and mashups that are not included
in the source data.

Bosch has reviewed mashup ecosystem from end-user programming point of
view [5]. Bosch also pointed out two success factors as well as two challenges that
this ecosystem has. The two success factors are, first, the value that end-users
gain by designing their own applications, and second, sharing of applications
among users. The two challenges are enabling the end-user programming for
inexperienced developers and minimizing ecosystem maintenance efforts. Fur-
thermore, Bosch identifies so called “undirected developers” that are able to
use the platform in unforeseen ways and provide significant innovations for the
overall ecosystem. Similarly to [5], our perception is that mashup ecosystems
are very valuable for end-users and service providers. However, despite popu-
larity that mashups have gained, polished end-user programming solutions for
mashups have not been very successful. In contrast, some promising efforts by
major players on the field, such as Google Mashup Editor and Microsoft Popfly,
have been discontinued, and mashup composing still lacks tool support. On the
other hand, mashup development has focused on building applications with tra-
ditional web development tools and architectures. Consequently, our previous

Proceedings of IWSECO 2012 21

research has been focused on applying good software engineering practises on
mashups, with the most practical tools at hand [6, 7].

Another interesting study is concerning the way a mashup ecosystem grows.
For instance, hypothesis in [8] is that mashup developers create new mashups by
copying existing ones. Simulations suggest that this would be true, as it is in line
with the reports about mashup ecosystem growing [3]. However, the hypothesis
of [8] has not been tested empirically.

3.2 Designing Services

Service providers are crucial stakeholders in mashup ecosystems, as they provide
the necessary content that is reused in mashups. There are numerous motives to
allow liberal access to the content of a service. One rationale is a desire for getting
a wider audience for certain platform, product, or content accessed through the
service. Moreover, opening a service can lead to numerous clients created by
third party developers to emerge on different platforms and for different user
requirements. Some services are designed so that spreading advertising messages
along with the content is possible.

Service providers support mashup ecosystems in four identifiable levels, which
are described in the following:

1. No support for mashups. Some web content authors do not support mashups
at all and provide their content solely as regular web documents. This kind
of content is still accessible with “screen scraping”, but such accessing is
typically error prone, and it often is illegitimate. Some services even have
implemented technical measures to prevent scraping. Furthermore, even if
reusing the content in mashups would be allowed, the web content author
does not have control on what parts of the content is reused, and it is dif-
ficult to build a business model around such approach towards mashups. In
addition, it is likely that accessing the content is very inefficient and cum-
bersome from mashup author’s point of view. Furthermore, since even the
smallest change in the web page can lead to a different interpretation of the
content, mashups relying on such services are usually somewhat fragile.

2. Access through a web feed. It is common that regularly updated sites, such as
blogs or news sites, provide their content through RSS, Atom, or other type
of web feed. A web feed is easy to set up and maintain, particularly if some
publishing system is used. The feed is intended mainly for users to subscribe
with some feed reader application, but at the same time the data becomes
accessible for mashups, too. While it is possible to establish some kind of
licensing for reusing the content, the control over the content is still rather
coarse. Use cases of web feeds are limited to accessing the content as a whole,
as, for instance, querying certain content item is not possible. Utilizing web
feeds in mashups is typically straightforward as helpful libraries and tools
for such task are available on most platforms. Some dedicated mashup tools,
Yahoo! Pipes (http://pipes.yahoo.com/) for instance, support only web

Proceedings of IWSECO 2012 22

http://pipes.yahoo.com/

feeds if content from an arbitrary service is desired to be included into a
mashup.

3. Access through a web interface. Providing a service with a web interface,
typically following either REST or SOAP architecture style, enables using
the service in mashups. Use cases of such interface allows not just data ac-
cessing but other types of services as well. For instance, a service can provide
means for social communication, authentication, database accessing, or spe-
cialized functions such as reverse geocoding or music identifying. Setting up
a web service with REST or SOAP interface requires careful planning and
implementation, especially if sensitive information is handled. However, such
system allows fine-grained control over the content as well as applications
using the interface, and it enables different kinds of business models. Service
load can be handled as well by limiting requests made in a time period, even
individually for each application. Utilizing well-designed web interfaces in
mashups is straightforward, and maintaining efforts that are needed when
the service is updated are typically trivial. Conveniently, the content can be
provided in different formats for the mashup developers to choose from, for
instance both JSON and XML formats are often supported.

4. Access through a programmatic interface. Establishing a programmatic Java-
Script API allows to integrate the sevice tightly with arbitrary web appli-
cations and mashup ecosystems. Such interface is used by including a Java-
Script library into the application, which makes it possible to use the service
with regular JavaScript function calls. Typically the JavaScript library is
downloaded from the service provider’s server instead of having a copy on
the server hosting the mashup, which makes possible to always use the most
recent version of the library. Setting up a programmatic JavaScript interface
requires careful engineering, but it enables superior control over the content
and applications. Diverse business models are possible, and the content can
be provided with different terms and licenses for individual clients. Program
code of the JavaScript library is often protected against misuse by code obfus-
cation or by other technical means. Considerable downside of the program-
matic interfaces is that updating the interface affects directly on the mashup
implementation. Therefore, programmatic interfaces are often provided in
numerous versions, and a new version is introduced whenever features are
added. Consequently, bug fixes need to be performed on all the versions,
which makes maintaining the interface more laborious. Another downside is
that if a programmatic interface is desired to be used on other runtime en-
vironments than a web browser, a parallel version needs to be provided. For
instance, Google Maps API (https://developers.google.com/maps/) has
separate native SDKs for Android and iOS mobile operating systems, and
used to have another version for Adobe Flash Player (http://www.adobe.
com/products/flashplayer.html). The Flash version was deprecated in
September, 2011.

The proliferation of programmatic interfaces is a step towards software cre-
ated from downloadable components, which is sometimes referred to as mash-

Proceedings of IWSECO 2012 23

https://developers.google.com/maps/
http://www.adobe.com/products/flashplayer.html
http://www.adobe.com/products/flashplayer.html

ware, web software development technique described in [9]. The most successful
example of this kind of interface is Google Maps JavaScript API, which is also
the most popular interface used in mashups [3]. It can be argued that one reason
behind the success of this API has been the implementation style, which is partic-
ularly convenient for application developers, as it is similar to DOM (Document
Object Model) and other interfaces that can be found from web browsers. How-
ever, Google Maps is not the only example of programmatic interface approach,
as there are numerous other examples including user authentication, social net-
working, HTML5 music and video players, and data visualization, among others.

Until recently most of the services have been provided for free with the ex-
ception of some very specialized ones such as image content recognition services.
However, in October 2011 Google announced that Google Maps API will be pro-
vided in two different versions: free and non-free, with the latter called Google
Maps API for Business. The one with a prize tag provides more advantageous
features such as higher request limitations and technical support. Even if this
is the first remarkable example of this kind of development, it is an interesting
change, particularly when bearing in mind that the Google Maps is the most
popular service used in mashups, and it is widely utilized in other types of web
applications, too. Therefore, this development may indicate a beginning of a new
kind of emerging business model.

3.3 Designing Mashups

Typically, mashups are build with combination of server- and client-side parts.
Functionality between these two parts is divided according to what is suitable
for the current design. In the early days, dynamic web sites were created on
server-side with combination of C programs, Perl, and shell scripts using Com-
mon Gateway Interface (CGI). Today, server-side web applications are often
developed with Java, server-side JavaScript, Perl, PHP, Python or other suit-
able language. Applications of this kind work especially well if the client device
has low processing resources as heavy processing takes place at the server-end
and the client just shows the result. As client-end terminals have become more
capable, it has become possible to compose mashups where the business logic
resides completely on the client-end.

While mashups can be constructed in numerous different ways with a plethora
of tools, there still are major practical problems related to mashup composing
and security. For instance, the web browser security model is too restricting for
mashups, tools introduced are lacking behind, and using dynamic languages for
large applications is an unknown territory for many developers. The field of web
programming is constantly changing as new interfaces, technologies and frame-
works build upon novel technologies emerge constantly. The amount of different,
constantly evolving APIs with different licenses is overwhelming. When devel-
oping large-scale mashups, situation may be even more problematic. Mashup
authors build their applications on web services, and mashup users can add
content to these services and consume it with mashups. Such ecosystem has
commercial potential, which is, however, limited because of technical, legal and

Proceedings of IWSECO 2012 24

other reasons. Some of the issues are general for both mobile and desktop envi-
ronment, but naturally mobile mashups have their own specific things to handle
as well.

While mobility restricts applications and application development, at the
same time it is a great enabler from the mashup development point of view.
The dynamic nature of mashups suits well for different ways mobile terminals
can be used. Often, the information needed on the fly is related to user’s con-
text, which can be available for applications to access automatically [10]. This
opens up opportunities to provide advantageous user experiences, as mashups
can dynamically present eligible information, possibly even automatically with-
out requiring specific user action. However, as mobile devices capabilities are
limited, extending mashups to the mobile domain is not trivial, and special solu-
tions are sometimes necessary. Mobile mashup ecosystem challenges, especially
from utilizing multimedia in mashups point of view, have been described in detail
in our previous paper [11].

There are situations when the composition of a mashup is not possible using
only dynamic code. For example, applications that require a lot of computation
power or access to interfaces that are not available for dynamic code, have to be
constructed with both dynamic and native code. Therefore, offering an interface
for mixing web technologies with the capabilities of native software components
is sometimes necessary. On the other hand, utilizing hybrid technology allows one
to combine the best of both worlds: performance and eye candy of traditional,
installed binary applications and pervasiveness and seemingly infinite resources
of the web.

3.4 Legal Considerations

In general, web interface legal terms and conditions are diverse. Commonly ser-
vice providers set restrictions for those uploading content to the service, as well
as those utilizing content of the sevice through an API, including mashup devel-
opers. In the following, some typical requirements and terms that affect mashup
development are described.

– Service Level Agreements (SLA) are used to provide uptime guarantee or
to state that the API has no liability for downtime or unexpected changes.
Sometimes the latter is available for those who use the interface for free, and
the former for paying customers.

– If the interface allows accessing user created content under different licenses,
terms of service (TOS) require developers to strictly follow those licenses. If
the application uses a cache, also the cache needs to reflect changes in con-
tent’s licenses and availability. Sometimes service terms determine time limits
for the cache reflecting these changes. Moreover, caching may be forbidden
completely.

– If the interface enables accessing user’s private data, TOS usually include
restrictions about how this data can be used and stored. The service provider’s
logo or other branding needs to be explicitly available in the mashup. Other

Proceedings of IWSECO 2012 25

services require adding acknowledgements to application source code. Detailed
terms on how the branding is presented may be represented. For instance,
when using Google Maps, the terms of the Google Maps API require that
the Google logo is the largest logo in the final implementation (https://
developers.google.com/maps/terms).

– Interface access rate can be limited to a certain amount of requests in a time
period. For instance, Twitter limits unauthenticated calls to 150 requests per
hour, whereas authorized calls are limited to 350 requests per hour (https:
//dev.twitter.com/docs/rate-limiting).

– Certain types of applications may be prohibited by the service provider. For
instance, Flickr TOS deny using Flickr API for any application that replicates
or attempts to replace the essential user experience of Flickr.com (http://
www.flickr.com/services/api/tos/).

– Repeated violations of interface terms, for instance exceeding use rates or using
the API in a forbidden type of an application, may make the service provider
to terminate certain application from accessing the interface. Technically this
can be achieved by restricting application IP addresses or application specific
API key from accessing the service. In practice, TOS often contain a clause
for such situation, although we have no data how commonly the clause is
exercised.

The above issues are further complicated by the fact that in many cases,
mashup developers have not signed a formal contract with service providers,
but rely on licenses. Consequently, as copyright owners and service providers
can change licenses more liberally than signed contracts, developers may end up
accidentally violating license rights overnight when the original service provider
updates license terms.

4 Sample Mashup Breeds and Ecosystems

Mashups can be classified based on numerous criteria, which in many ways af-
fects the fashion the associated ecosystem can be established. One can classify
mashups into breeds, such as server- and client-side mashups, and multiple and
single API mashups. Moreover, mashup ecosystems can be classified into ex-
plicit and implicit ecosystems. The former includes commercial and enterprise
mashups, and the latter includes situational mashups, as well as most mashups,
that can be classified according to the most essential API used, establishing an
ecosystem that is led by the provider of this API. In the following, mashup breeds
and ecosystems are described in more detail and examples of different types of
mashup ecosystems are presented.

4.1 Mashup Breeds

Server- and client-side mashups. One way to classify mashups is division
between server-side and client-side mashups, based on where downloading, pro-

Proceedings of IWSECO 2012 26

https://developers.google.com/maps/terms
https://developers.google.com/maps/terms
https://dev.twitter.com/docs/rate-limiting
https://dev.twitter.com/docs/rate-limiting
http://www.flickr.com/services/api/tos/
http://www.flickr.com/services/api/tos/

cessing and generating of the web content takes place. Server-side mashups ap-
plication logic as well as accessing different web resources is implemented at the
server-end. Client-side mashups are implemented completely on the client-end
so that processing takes place at the user’s web browser. Because of historical
reasons, server-side approach has been more popular in the past, but as the pro-
cessing power of web browser at the client-end has increased, client-side approach
has become common as well. These two types of mashups have their advantages
as well as disadvantages and suit for different situations, for instance a server-
side mashup is not limited by browser’s security model, the same origin policy,
that isolates documents loaded from distinct origins from each other. Naturally
hybrid approach combining server- and client-side mashup techniques is possi-
ble as well, and mashup developer can decide how to divide the functionality
between the server and the client. If a mashup ecosystem consists of client-side
mashups, it is necessary to pay more attention on how mashups can interact
with services located at different origins. In addition, accessing specific mashup
clients may be difficult because of addressing issues in IPv4-based networks.

Multiple and single API mashups. Instead of combining content from
multiple APIs, which is usually the case, some mashups are using only one single
API to create new visualization for existing web services. Often the user inter-
face of this kind of mashups is simplified and added with attractive properties of
some kind. Another kind of single API mashups provide more advanced ways for
searching than the original service. For instance, there are numerous mashups
that show images retrieved from the popular image service Flickr. Another exam-
ple of a single API mashup is WikiMindMap (http://www.wikimindmap.org/),
which generates a mindmap about a keyword based on Wikipedia articles.
Mashup ecosystems that consist of numerous single API type of mashups are
usually build around the few most popular services of the web. Such ecosystems
have emerged, for instance, around Google Maps, Flickr, Wikipedia and Twitter.

4.2 Explicit Mashup Ecosystems

Commercial mashups. Commercial mashups are created to show a profit
for the mashup publisher where as non-commercial mashups are provided non-
profit. In commercial mashup ecosystems, mashup authors and service providers
coordinate explicitly and use either specific contracts or common TOS agree-
ments. Commercial mashup ecosystem is required to implement reliable and
secure methods to in order to transfer sensitive data. In addition, availability of
services in the ecosystem in a commercial setting is naturally vital. A typical
example of a commercial mashup combines information about the product be-
ing sold with user reviews from multiple sources. Another type of commercial
mashups is those including advertisements. Commercial mashups are targeted
at consumers in contrast to enterprise mashups that are targeted at business
users, even though both are often created by a company. It is common that a
commercial mashup is provided for mobile device users as an alternative user
interface for an electronic commerce. Further examples of commercial mashups

Proceedings of IWSECO 2012 27

http://www.wikimindmap.org/

are price comparison and product search mashups. For instance, there are nu-
merous mashups offering this kind of service based on Amazon’s and EBay’s
price data. Another kinds of commercial mashups help to locate a certain dealer
on a map. An example of a commercial mashup combining social network ser-
vices is Scupal (http://www.scupal.com/), a social buying website launched in
India. Scupal allows users to select a product they would be willing to purchase,
and then gather other interested buyers of the same product within their social
networking contacts. The more there are buyers the less is the price.

Enterprise mashups. Enterprise mashups are developed to solve some par-
ticular business-related problem. In contrast to consumer mashups, that utilize
only open web services, they can use closed enterprise data sources and com-
bine the information with data from the web. Forming more closed ecosystem
than the commercial mashup ecosystem, enterprise ecosystem is controlled by
organization’s internal interface specifications and descriptions, in addition to
usage of public web services available under common TOSs. Security features of
an enterprise mashup ecosystem are crucial as sensitive data of an organization
is often handled. For instance, storing the data should be done in controlled
fashion within the organization’s own storage facilities. Enterprise mashups can
be created solely by the company’s IT department or a sand-box environment
may be provided for non-experts to create mashups. However, the more degree
of freedom is allowed, the greater are the skills needed for mashup development.
Typical to enterprise mashups is that they focus is on a single presentation and
target at providing a tool to help collaboration with different people working
with the same objective.

Reusing of existing mashup solutions is often in a key role in an enterprise
mashup ecosystem. One activity that targets at such reuse is Enterprise Mashup
Markup Language (EMML), which is a XML-based domain specific language for
developing enterprise mashups developed by the Open Mashup Alliance (OMA).
With EMML, OMA aims at introducing a standardized, consistent and interop-
erable way to develop enterprise mashups. In addition to defining the language,
OMA provides a reference implementation of a runtime that processes mashup
scripts written in EMML. EMML can be used to declaratively describe the data
processing flow, i.e. data composing, of a mashup.

4.3 Implicit Mashup Ecosystems

Situational mashups. Term situational application is used about an applica-
tion that is created for a narrow group of users with unique needs, and some
mashups are developed as situational applications. In Clay Shirky’s essay Sit-
uated Software [12] this type of applications are described to be “designed for
use by a specific social group, rather than for a generic set of ’users’ ”, and
therefore, ecosystems build around situational mashups are implicit. Typically
situational applications have short life span and the quality of engineering may
not be first class. In addition, scaling up is often difficult with situational ap-
plications. However, Shirky remarked that as the group of users is relatively
small, it is often unnecessary to implement mechanisms for user supervision.

Proceedings of IWSECO 2012 28

http://www.scupal.com/

Furthermore, situational applications are typically more personalized, and they
can contain pre-entered information that is relevant only for the small group of
intended users. As simple mashups that utilize readily available interfaces can be
composed together rather quickly, the cost of implementation is relatively low,
and the ecosystem containing situational mashups may have rather lightweight
security, moderation and authentication features. Therefore, mashups can be
targeted at small, specific groups of users and be very personalized, as well.
The architecture and other engineering aspects of this kind of mashups may not
be the most polished, but with the specific target group and purpose, it does
not have resonance. One should bear in mind, however, that when mashups are
used to address non-trivial, more complicated issues, this approach should not
be used as it quickly leads to difficulties. Situational mashup ecosystems can
emerge swiftly, but typically lifespans of such ecosystems are shorter as well.

The most essential API. One way to do the classification is to use the type
of most essential API to determine the mashup type. For instance, a mashup can
be classified as social, news, map, image, video, audio or search mashup based
on the main service utilized. In consequence the ecosystem is build around this
central service, and it can contain both implicit and explicit interactions. Often
these mashups are targeted at consumers and provided for free, and therefore the
implicit model is more common. Mashup statistics divided into categories based
on the essential API used in a mashup can be collected from ProgrammableWeb
site. The site provides statistics about mashups as well as service interfaces used
to create new mashups. Only those mashups that are submitted to the website
are listed, but the site can be used as a source for suggestive information about
consumer mashups. However, the site does not list enterprise mashups at all. As
can be seen in Fig. 2, mapping mashups are the most popular type of mashups.
Social, search, photo, shopping and video mashups are roughly equally popular.
In addition, remarkable number of mashups have been discontinued (tagged
“deadpool”).

Fig. 2. Mashup types according to ProgrammableWeb (http://www.
programmableweb.com/mashups).

Proceedings of IWSECO 2012 29

http://www.programmableweb.com/mashups
http://www.programmableweb.com/mashups

5 Implementation Considerations

In our research (see e.g. [6, 7]), we have identified challenges that mashup ecosys-
tem confronts in the areas of cloud infrastructure, web services, legal issues, and
tool support. In the following, these will be briefly addressed.

Cloud Infrastructure. Cloud infrastructure related issues refer to address-
ability of mashup ecosystem endpoints as well as transparency and protocol sup-
port of network. Before IPv6 gains ground it might be necessary to use higher
level methods to address network endpoints. Addressing mashup clients and ser-
vices at too high level can derive scalability and performance issues. Another
problem is caused by non-transparent network nodes that may cause some parts
of the ecosystem become unattainable. Furthermore, lack of protocol support for
other than HTTP can cause for instance video and audio streams fail to operate.

Web services. Web service reliability and complexity of integrating a high
number of services are another type of challenges. Web service reliability can be
addressed by adding fallback mechanisms, but this strategy will make the im-
plementation more complex. While adding more services to the mashup can be
attractive for users it makes the implementation more complex and increases vul-
nerability to service breakouts and incompatible version upgrades, which plague
especially mashups that reuse services anonymously without explicit contracts.
Furthermore, client-end device capabilities may be limited and operational ex-
penses can be an issue, especially with mobile devices.

Legal issues. Moreover, legal issues related to mashup ecosystem are nu-
merous. Service terms are often incompatible and hard to follow in complex
mashups. The situation is even more complex when a mashup is hosted on
third party platform, such as mashup tool providers servers. Mashups can be
required to follow some content related limitations as well. For instance, some
content can be freely available in U.S. but restricted from accessing in U.K.
Some service providers may restrict their interfaces to be used only on desktop
and prohibit using them on mobile devices. In addition, libraries and frameworks
used in mashups may have conflicting licenses. Furthermore, protecting a client-
side mashup from copying is often difficult as the executable code needs to be
transferred to the client-end terminal.

Tools. Mashups can be developed with conventional web programming tech-
niques using text editor and environment with debugging capabilities [13]. This
requires considerable experience, as sometimes it is necessary to crawl the con-
tent from web pages. This is error-prone and can lead to hard-to-trace errors
when subtle changes happen in the web sites from which content is downloaded.
In contrast, dedicated mashup development tools can be helpful, especially when
end-users are creating mashups. Typically, the target environment for dedicated
tools is a web browser. Moreover, also the number of web sites from which con-
tent can be accessed is limited, and only few services are supported by the tools.

Proceedings of IWSECO 2012 30

6 Conclusions

Web-based software and services have become commonplace. As virtually all
imaginable content and services are becoming available online, there will be
new, optimized ways to consume content and access services. In this paper, we
have argued that mashups – special kinds of web applications that combine
data and services from numerous sites – enables the development of new, im-
proved applications that enrich the basic online facilities. A dimension that has
been commonly overlooked with mashups is that they are not only about the
technology, but their development and use is governed by other factors as well.
Consequently the elements of opportunistic design – hacking, mashing and glu-
ing, as pointed out in [14] – must be associated with the creation of sustainable
software ecosystems of the web era.

Service interfaces are integral part of mashup ecosystems, and we indentified
four levels of support that service providers can offer for mashups. We believe
that the success of programmatic JavaScript interfaces is one indicator of the
trend towards mashware ecosystems – software ecosystems that leverage source
code and software components that are downloaded dynamically from all over the
world. As pointed out in [9, 15], mashware ecosystems can dramatically improve
productivity of web application development and allow global reuse of software
components. However, research is needed in numerous areas including security,
modularity and legal aspects, as well as software engineering methodologies to
support the development of such ecosystems.

In the future, we expect that the multifaceted nature of mashups will lead to
increasing interest also on the research side. So far, such applications, as well as
associated ecosystems, have gained relatively little attention from researchers.
Consequently, there are numerous directions for future work, where the main de-
velopment principles of mashups in general as well as associated business impacts
are analyzed in more detail.

References

1. Messerschmitt, D.G., Szyperski, C.: Software Ecosystem: Understanding an Indis-
pensable Technology and Industry. MIT Press, Cambridge, MA, USA (2003)

2. Salo, J., Aaltonen, T., Mikkonen, T.: Mashreduce: Server-side mashups for mobile
devices. In: Proceedings of the 6th international conference on Advances in grid and
pervasive computing. GPC’11, Berlin, Heidelberg, Springer-Verlag (2011) 168–177

3. Yu, S., Woodard, C.J.: Service-oriented computing — icsoc 2008 workshops.
Springer-Verlag, Berlin, Heidelberg (2009) 136–147

4. Hoyer, V., Stanoesvka-Slabeva, K., Janner, T., Schroth, C.: Enterprise mashups:
Design principles towards the long tail of user needs. In: Services Computing, 2008.
SCC ’08. IEEE International Conference on. Volume 2. (july 2008) 601 –602

5. Bosch, J.: From software product lines to software ecosystems. In: Proceedings of
the 13th International Software Product Line Conference. SPLC ’09, Pittsburgh,
PA, USA, Carnegie Mellon University (2009) 111–119

Proceedings of IWSECO 2012 31

6. Mikkonen, T., Salminen, A.: Towards a reference architecture for mashups. In:
Proceedings of the 2011th Confederated international conference on On the move to
meaningful internet systems. OTM’11, Berlin, Heidelberg, Springer-Verlag (2011)
647–656

7. Salminen, A., Mikkonen, T., Nyrhinen, F., Taivalsaari, A.: Developing client-side
mashups: experiences, guidelines and the road ahead. In: Proceedings of the 14th
International Academic MindTrek Conference: Envisioning Future Media Environ-
ments. MindTrek ’10, New York, NY, USA, ACM (2010) 161–168

8. Weiss, M., Sari, S.: Evolution of the mashup ecosystem by copying. In: Proceedings
of the 3rd and 4th International Workshop on Web APIs and Services Mashups.
Mashups ’09/’10, New York, NY, USA, ACM (2010) 11:1–11:7

9. Taivalsaari, A.: Mashware: the future of web applications. Technical report, Moun-
tain View, CA, USA (2009)

10. Mikkonen, T., Salminen, A.: Towards pervasive mashups in embedded devices. In:
Proceedings of the 2010 IEEE 16th International Conference on Embedded and
Real-Time Computing Systems and Applications. RTCSA ’10, Washington, DC,
USA, IEEE Computer Society (2010) 35–42

11. Salminen, A., Kallio, J., Mikkonen, T.: Towards Mobile Multimedia Mashup
Ecosystem. In: IEEE International Conference on Communications Workshops,
ICC Workshops. (2011)

12. Shirky, C.: Situated software. First published March 30, 2004 on the ”Networks,
Economics, and Culture” mailing list (2004)

13. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding mashup development.
Internet Computing, IEEE 12(5) (sept.-oct. 2008) 44 –52

14. Hartmann, B., Doorley, S., Klemmer, S.R.: Hacking, mashing, gluing: Understand-
ing opportunistic design. IEEE Pervasive Computing 7(3) (July 2008) 46–54

15. Mikkonen, T., Taivalsaari, A.: The mashware challenge: bridging the gap between
web development and software engineering. In: Proceedings of the FSE/SDP work-
shop on Future of software engineering research. FoSER ’10, New York, NY, USA,
ACM (2010) 245–250

Proceedings of IWSECO 2012 32

Publication II

Towards mobile multimedia
mashup ecosystem

A. Salminen, J. Kallio and T. Mikkonen

c©2011 IEEE. Reprinted with permission, from the Proceedings of IEEE
ICC 2011 Workshop on Advances in Mobile Networking – “Towards a Next
Generation Mobile Core Network” (ICC 2011).

Towards Mobile Multimedia Mashup Ecosystem
Arto Salminen

Department of Software Systems
Tampere University of Technology
P.O. Box 553, FIN-33101 Tampere,

Finland
e-mail: arto.salminen@tut.fi

Jarno Kallio
PacketVideo Finland

Hallituskatu 8, FIN-33200 Tampere,
Finland

e-mail: kallio@pv.com

Tommi Mikkonen
Department of Software Systems

Tampere University of Technology
P.O. Box 553, FIN-33101 Tampere,

Finland
e-mail: tommi.mikkonen@tut.fi

Abstract — Mashups that combine already existing data into an
integrated experience are becoming increasingly popular. So far
most mashups have been built around maps and images.
However, as the web is becoming an increasingly ubiquitous
media, also multimedia content – sound, video and even small
programs – is emerging as a candidate for mashup creation, with
potentially superior user experience. Currently available
methods to implement mashups do not allow effortless access to
personal data across domains or provide means to ensure that the
user experience is coherent. This paper describes our mobile
mashup ecosystem aimed to solve these problems and work as a
ubiquitous platform for mobile multimedia mashups.
Furthermore, we provide a brief literature review about existing
mashup frameworks and end-user programming. In addition, to
constitute a basis for future work, we discuss about challenges
expected to emerge when the ecosystem is implemented.

Mashup ecosystem, multimedia,mobile environment

I. INTRODUCTION
The Web has dramatically changed during the last 15 years.

When in the old days we used the Web mainly for browsing
static websites, sending e-mails and maybe for making
occasionally VoIP calls, today it has become a deployment
environment for personalized software systems such as word
processors, spreadsheets, social network communication tools
and even 3D applications. All this has had major effect on what
we expect from our web experience. Mashup systems are one
of the new breeds of applications that are used for personalized
content and communication, made possible by the data that is
readily available in the Web.

Mashup is a web application that combines code, data and
other content from multiple sources creating some added value
for the user. Traditional mashups have been executed inside a
web browser but other systems can be used as runtime
environment as well. In general, mashups are about simplicity,
usability, and ease of access [1]. A mashup can combine the
content in new, unforeseen way, thus creating entirely new web
service, or a mashup can provide new visualization for existing
service.

Currently there are numerous issues related to developing
and using mobile mashups. Previous research [2, 3], based on
our experiences about client-side mobile mashups build with
Qt application framework (http://qt.nokia.com), described
problems related to lack of well-defined, resilient interfaces.
Many web services lack a well-defined API and even if the
API exists, it has no public interface specification that would

state which parts are meant to be used by third parties and
which are only intended for internal use. In addition, our
experience showed that mobile mashups also struggle with
problems associated with usability, connectivity and
performance.

While mobility sets restrictions regarding applications and
application development, at the same time mobility provides a
great opportunity from mashup development point of view.
The dynamic nature of mashups suits well for different ways
mobile terminals can be used. Often, the information needed on
the fly is related to user’s context, which can be available for
applications to access automatically [4]. This opens up
opportunities to provide advantageous user experiences, as
mashups can dynamically present eligible information,
possibly even automatically without requiring specific user
action.

Since mashups combine data from numerous origins, the
stakeholders that provide the information form an ecosystem –
a set of entities that act as a single unit, instead of each
participating business acting separately. Sometimes, explicit
service level agreements (SLA) between businesses are made,
but at times, an ecosystem can also be formed implicitly. For
instance, one actor can build a service on top of services that
are available from the web with liberal enough licenses that
allow service composition.

In this paper, we discuss the creation of ecosystems for
mobile multimedia mashup composing. The contribution of
this paper is two-fold. First, we provide a literature review
about currently available mashup ecosystems, mashup security
and end-user programming solutions. Second, we describe our
mashup ecosystem architecture requirements and we present
number of fundamental challenges we expect to emerge, which
constitutes a basis for future work that will be reported
separately.

The paper is structured as follows. In Section 2, we provide
a short literature review on already existing systems. In Section
3, we introduce a sample mashup ecosystem, based on which
we reflect emerging challenges in Section 4. In Section 5, we
draw some final conclusions.

II. BACKGROUND
Mashup ecosystems require technical enablers, such as

open interfaces that provide support for combining content.
There are numerous themes and already existing systems that
can be associated with mashup composition in the context of

978-1-61284-955-3/11/$26.00 ©2011 IEEE

mobile multimedia. The themes that we address in the
following include state-of-the-art mobile mashups, mashup
frameworks, mashup security, and end-user programming.

A simple example of a communication mashup is Nokia
N900 device’s instant messaging application. It can be used to
make connections to several communication services such as
Facebook chat, SIP account, Microsoft Messenger, Google
Talk or Skype, for instance. The application has support for
add-ons so it can be easily expanded to handle new services as
they emerge.

Google has created a mashup system called Google Maps
for Mobile (http://www.google.com/mobile/maps/), whose
main component is a map that shows the user’s current GPS
location. This mashup system can be used to track positions of
friends and to display additional map related information,
including for example traffic data, driving directions,
interesting places or web camera images, on layers over the
map.

Another interesting example of mobile map-based mashup
is Telar Mashup for Nokia N810 tablet by Brodt et al. [5]. It
uses modified mobile web browser to gain an access to GPS
peripheral of the device and combines the location data with
map retrieved from Google Maps.

De et al. have developed a mashup framework called
Service Context Manager (SCM) framework [6]. SCM handles
all the stages of context gathering, processing, inferring and
reasoning to come up with useful recommendations. It consists
of three parts: 1) device and service discovery function, 2)
transformation framework and 3) reasoning module. The
device and service discovery function searches the ambient
environment for resources. Transformation framework
aggregates the distributed context information and abstracts it
to common, formal structure. The reasoning module is a hybrid
inference and control system that asserts missing context
information and provides application interface for reasoned and
filtered context.

Ikeda et al. [7] have designed a framework for creating
flexible mashups in which the user can selectively browse
trough mashup items. The framework includes data
management engine for on-demand data generation and GUI
widgets that can be used to browse the data. These are both
implemented on client-side as well as connections to different
web services. On the server-side the framework provides only
configuration files for widgets and data management.

Service access control API that aims to better mashup
security has been studied by Hashimoto et al. [8]. The SAXAE
API provides functions to the mashup to retrieve protected,
non-public resources securely This allows the mashup to access
user’s private data, for example on some social service, in
secure fashion.

Warner et al. have researched privacy protection model for
government mashups [9]. This model allows users to specify
their individual privacy policies that can be applied to the use
of their data. The approach involves the protection of sensitive
data based on not only who is requesting access but on the
intended use too.

Another security related studies are lattice-based mashup
security model by Magazinius et al. [10]. The security lattice is
build from the origins of mashup components so that the each
level of the lattice corresponds to a set of origins. To allow a
controlled release of information between mashup components,
a declassification mechanism is proposed. Declassification
policy defines what pieces of information can be shared
between components, so that sharing between components on
the same level of the lattice is unrestricted, but limited between
other levels. Sharing data from security level to another can
only be done if it is allowed explicitly.

An identity management protocol for mashups has been
studied by Zarandioon et al. [11]. Their proposal utilizes
conventional public-key cryptography to eliminate need for a
trusted identify provider. In addition, their research describes a
framework that allows secure indirect communication between
client-side mashup components. Both the identity management
protocol and the framework are implemented as an in-browser
library.

Tobias Nestler has done research [12] about Service
Oriented Architectures from the Service-to-User point of view.
He pointed out that existing mashup tools such as Yahoo Pipes
(http://pipes.yahoo.com/pipes/), Microsoft Popfly
(discontinued during autumn 2009) and IBM QedWiki
(http://www-01.ibm.com/software/info/mashup-center/) are
lacking support for input and output parameters other than
simple data types. Another discovery was that UI components
such as buttons, navigation elements or multiple screens, were
not supported in existing tools.

Technical report by Antero Taivalsaari [13] lists a number
of existing mashup development tools which are geared
towards ordinary users instead of just professional
programmers. Most of the tools described support
programming via some kind of visual programming interface
but allow source code editing as an advanced feature.

Research [14] by Wang et al. describes end-user mashup
programming using nested tables and designing a developing
environment that uses this approach. The programming model
of the environment relies on spreadsheet-style view for the
mashup data. The data inside worksheets can be modified with
simple scripts that consist of very limited set of operations.

One interesting project by Resnick et al. [15] is Scratch,
which is a programming language developed to allow children
to make programs by using a simple graphical interface. Even
though Scratch has been intended for children, people of all
ages have used it. Over 540,000 registered members of Scratch
online community (http://scratch.mit.edu/) have created over
1,100,000 projects (as of 13th June 2010).

Cao et al. studied end-user mashup designing [16] by
conducting a think-aloud experiment with ten participants
creating a web mashup using the Microsoft Popfly mashup tool
already mentioned above. They discovered that participants
designed their mashups by numerous iterations divided into
framing, acting and reflecting phases. Another discovery was
that presenting application logic alongside with the runtime
output and providing visual hints about connection between
those two would have made the debugging task a lot easier.

Figure 1. Sample mobile multimedia mashup

III. SAMPLE MASHUP ECOSY

In order to address challenges in a pra
next define a sample mashup ecosystem in t
can discuss about general requirements r
development. The example ecosystem archi
in Figure 1, consists of three domain
MobileDomain and CloudDomain. HomeDo
wide number of networked devices, which ar
or shared and have constant connectio
MobileDomain is typically the user’s smart
performance internet connectivity. Finall
consists of AggregatorServer, which is conn
of arbitrary web services. AggregatorServer
that combines content from pool of web ser
all exemplary domains together enabling div
across all domains. The system does not po
identity of the user, but in a typical scenar
same person that can select the best possib
services, depending on the context.

Next, we discuss a number of relevant is
important technical prerequisite for building s

Specified interfaces. It should be possi
the ecosystem to allow different vendo
compatible subsystems. The ecosystem
guidelines how to design interfaces so that th
would still remain coherent in different plat
experience perspective having a minimum se
the non-functional properties of the ecosys
The literature review shows that a number o
mashups have been proposed, and they can b
and applied to allow compatibility.

Portability. It should be possible to acc
with the most dominant mobile clients and st
same functionality. As an industrial exam
provides mobile multimedia players for m
such as iPhone, Symbian, BREW, Linux and
(http://www.pv.com/products/core/).

Performance and Response Times.
response times build should be comparab
applications using only local data. Research
et al. suggests the following guideline
applicable limits:

p ecosystem.

YSTEM
actical fashion, we
terms of which we
regarding mashup
itecture, illustrated
s: HomeDomain,
omain can contain
re usually personal
on to the web.
phone with high-

ly, CloudDomain
nected to a number

acts as a gateway
rvices and bridges

verse mashup cases
ose restrictions on
rio the user is the

ble combination of

ssues that form the
such a system.

ible to standardize
ors to implement

should provide
he user experience
tforms. From user

et of constraints for
stem is important.
of frameworks for
e evaluated further

cess the ecosystem
till get roughly the

mple, PacketVideo
multiple platforms
d Windows Mobile

Performance and
ble to multimedia
[17] done by Card

es as commonly

• 100 milliseconds is the li
that the interface is respon

• 1 second is the limit for th
at hand, without special fe

• 10 seconds is the limit f
focused at the program. F
process indicator is neede

Security. Security and priv
carefully. Security model shoul
access to different services and
possibility to misuse the system
understand and implement
complexity to mashup develo
shows that work for mashup s
but applying it will still need
when targeting at mobile devic
extensive work performed ea
example Mobile Java where a
specified – can be applied.

IV. FUNDAMEN

The main problem areas th
work are listed in the follo
challenges under four catego
services, mobile devices and
interrelated in real ecosystems,
discussed separately.

A. Cloud infrastructure
Addressing. The universal

forces the system to implem
connectivity functionality betw
servers with higher level proto
This leads inevitably to perfor
capacity is compromised when
be used.

Routers. Protocol support
issue. It is hard to predict wh
arbitrary network, as there a
resulting combinations. Proble
applying streaming protocols in

Firewalls. Accessing other
might not be available bec
manipulation or communicatio
other non-transparent network n

Bandwidth. Mobile broad
kinds of multimedia services.
quality video may consume ba
simultaneous transfer of oth
possible [18]. One option to ad
adaptive video transcoding [19,

Servers. Scalability of the
multimedia services and dev
research is needed. There may
mobile connectivity and device

imit for the user to have feeling
nding immediately,

he user to keep focus on the task
eedback needed, and

for keeping the user’s attention
For longer delays, some kind of
ed.

vacy issues should be considered
ld be liberating enough to allow

d user context data but eliminate
m. The model should be easy to

without adding unnecessary
opment. The literature review
security has already been done,
d careful evaluation, especially
ces. In addition, we believe that
arlier on other contexts – for
number of interfaces have been

NTAL CHALLENGES
hat constitute a basis for future
owing. We have divided the
ries: cloud infrastructure, web

d legal issues. Although often
items in different categories are

l lack of static IPv4 addresses
ment some of the low level
ween mobile terminals and web
ocols, such as HTTP and XML.
rmance issues, because network
n too high-level protocols must

for other than HTTP is often an
at protocols are available in an
are numerous alternatives and
ems may occur especially when
n mobile context.

r parts of the mashup ecosystem
cause of unexpected protocol
on blocks by firewalls, NATs or
nodes.

dband is inadequate for many
 Real time streaming of high-
andwidth to such a degree that
er multimedia content is not
ddress this problem is to deploy
, 20].

ecosystem for large amount of
vices is a topic where further

be need to optimize servers for
s.

B. Web services
Aggregation of the Web. Implementing the Aggregator-

Server efficiently will be a major challenge. In addition,
because of web service APIs may change frequently,
maintaining the AggregatorServer is most likely a laborious
task, especially if a wide number of web services is supported.

Availability. Web service breakdowns and high service
load should be taken into account. We need to build fallback
mechanisms and alternative ways for providing the mashup
experience.

Complexity. Because of integration complexity the
ecosystem may become highly vulnerable for unforeseen
problems. Therefore, the AggregatorServer interfaces should
be carefully designed for simplicity. Applying research done
on the field of REST interfaces may be helpful starting point
for the design of the AggregatorServer [21].

C. Mobile Devices
Battery life. Rich mashups have negative effect for battery

life. It is important to turn off unnecessary functionalities, such
as animations, when they are not needed. One option to take
this into account could be implementing power saving
functionality based on the context of the user.

User operational expenses. Mobile networking costs for
the user without data plan are relatively high. In addition, some
major mobile operators have recently given up providing
unlimited data plans. Mobile operators’ business model does
not necessarily suit for heavy use of mobile data.

Coherent user experience. Making mashups to work
seamlessly together is difficult because of there is no standard
way to implement web service interfaces. One important
function of the AggregatorServer is to solve this problem.

D. Legal Issues
Licensing. Most mashups combine content that is created

by different 3rd parties. Therefore, some legal issues may
emerge. Different vendors may provide their content to be used
freely, but others may strictly forbid using their data in other
context. APIs may provide content marked with different
licenses. For example, Flickr image hosting service API
(http://www.flickr.com/services/api/) can be used to access both
images marked with a Creative Commons license and with “all
rights reserved” notices.

Terms of Service. Service provider’s “Terms of Service”
may set further regulations to the use of the content. For
example, if a mashup application caches content in some way,
it should take care of situations where the content author
changes the content rights or visibility. Furthermore, it may be
required that some specific text is displayed for the users of a
mashup. For example, mashups that use content from Flickr
need to prominently display a notice “This product uses the
Flickr API but is not endorsed or certified by Flickr.".
Furthermore, web applications using Flickr content are
obligated to reflect removal of the content within 24 hours
(http://www.flickr.com/services/api/tos/).

Commercial vs. other use. We are accustomed using most
web sites for free. However, using their APIs for commercial

purposes can lead to even stricter restrictions than described
above. Often commercial use requires a separate agreement
with the service provider. The service provider may charge for
using the API although the same API is available for free for
non-commercial use. For the creation of a fostering ecosystem,
even if many systems are initially built on top of freely
available facilities, this forms an essential item since building
and hosting such a service obviously requires financial
investments, at least in the long run.

E. Tool Support
End-user programming. Because by definition mashups

add value from the user’s perspective, it should be possible for
the user to create mashups. System allowing this kind of
actions requires dynamic rather than static composition. So far,
tools have been restricted in features, or, as is the case with
many fully programmatic approaches, too complex for a casual
user. Furthermore, while numerous systems have been
introduced, it is difficult to say which of the tools are ready for
prime time, and which are simply temporary experiments that
will not be supported in the long run.

Plug-and-play interfacing. To enable smooth
development of complete mashup applications, a library
containing software components with compatible interfaces is
needed. In present tools either the set of available component
subsystems is restricted to those where a ready-made
interfacing system exists, or the developer is assumed to be
educated enough to compose at least modest pieces of glue
code for integrating the ready-made services.

V. CONCLUSIONS
Ecosystems have emerged as a commonly used notion in

service economy. They commonly rely on a shared platform –
such as the web – on top of which different parties contribute
their own, company-specific innovations, and all the
participants gain the benefits of joint investment in the
platform. Furthermore, to leverage the full potential of the web,
the systems built out of ecosystem services often result in
mashups.

Existing mashup examples and frameworks reveal the great
potential of combining mobile multimedia and other content
from the web. Many components needed to implement elegant
and attractive mobile multimedia ecosystem have already been
build. However, besides some individual advanced
applications, mashups available today in general do not provide
good enough quality and consistency for end-users. Usability
of proposed solution discussed in this report should be further
researched from this point of view.

Our literature review shows that end-user mashup
programming is a field of research where numbers of tools
have been introduced and reviewed. Nevertheless, especially
on mobile targets, implementing truly liberating mashup
programming environment is a major challenge. However,
allowing end users to design their own mashups with simple
enough tools would enrich the user experience significantly.
Furthermore, this would most likely also result in new and
innovative systems.

We anticipate a number of technical challenges related to
cloud infrastructure, web services, and mobile devices when
the mashup ecosystem described in this paper is implemented.
However, we believe that with careful design and further work
these problems will be overcome. However, sorting out the
technicalities is only a beginning of the work, and its role
should not be overly emphasized.

Legal as well as economic issues are important topics
where further work - performed by experts in respective fields -
is needed. Most mashups developed by individuals for non-
commercial purposes do not have same restrictions as ones
developed or supported by a commercial vendor. Because
different services may set almost arbitrary terms of use for
those willing to access their data, combining them into a single
integrated experience is difficult, in particular when
considering the whole ecosystem needed in the composition of
the application. Consequently this new frontier is an area where
new business models as well as opportunities will emerge.

REFERENCES
[1] J. Yu, B. Benatallah, F. Casati, F. Daniel, "Understanding mashup

development," IEEE Internet Computing, pp. 44-52, September/October,
2008.

[2] F. Nyrhinen, A. Salminen, T. Mikkonen, A. Taivalsaari, “Lively
mashups for mobile devices,” in Proceedings of the First International
Conference on Mobile Computing, Applications and Services, San
Diego, California, USA, October 26-29, 2009.

[3] A. Salminen, F. Nyrhinen, T. Mikkonen, and A. Taivalsaari,
“Developing client-side mashups: experiences, guidelines and the road
ahead,” to appear in Proceedings of the MindTrek'2010 Conference,
Tampere, Finland, October 6-8, 2010.

[4] A. Salminen and T. Mikkonen, ”Towards pervasive mashups in
embedded devices,” in Proceedings of the 16th IEEE International
Conference on Embedded and Real-Time Computing Systems and
Applications. 35-42, IEEE Computer Society, 2010.

[5] A. Brodt, D. Nicklas, “The TELAR mobile mashup platform for Nokia
internet tablets,” in Proceedings of 11th International Conference on
Extending Database Technology, Munich, Germany, 2008.

[6] S. De, K. Moessner, “A framework for mobile, context-aware
applications,” in Proceedings of the 16th international Conference on
Telecommunications, Marrakech, Morocco, May 25 - 27, 2009.

[7] S. Ikeda, T. Nagamine, T. Kamada, “Application framework with
demand-driven mashup for selective browsing,” in Proceedings of the
10th international Conference on information integration and Web-
Based Applications & Services, Linz, Austria, November 24 - 26, 2008.

[8] R. Hashimoto, N. Ueno, and M. Shimomura, “A design of usable and
secure access-control APIs for mashup applications,” in Proceedings of
the 5th ACM Workshop on Digital Identity Management, Chicago,
Illinois, USA, November 13 - 13, 2009.

[9] J. Warner, and S. A. Chun, “A citizen privacy protection model for e-
government mashup services,” in Proceedings of the 2008 international
Conference on Digital Government Research, Montreal, Canada, May
18 - 21, 2008.

[10] J. Magazinius, A. Askarov, and A. Sabelfeld, “A lattice-based approach
to mashup security,” in Proceedings of the 5th ACM Symposium on
information, Computer and Communications Security, Beijing, China,
April 13 - 16, 2010.

[11] S. Zarandioon, D. Yao, and V. Ganapathy, “Privacy-aware identity
management for client-side mashup applications,” in Proceedings of the
5th ACM Workshop on Digital Identity Management, Chicago, Illinois,
USA, November 13, 2009.

[12] T. Nestler, “Towards a mashup-driven end-user programming of SOA-
based applications,” in Proceedings of the 10th international Conference
on information integration and Web-Based Applications & Services,
Linz, Austria, November 24 - 26, 2008.

[13] A. Taivalsaari, “Mashware: The Future of Web Applications,” Sun
Microsystems Laboratories Technical Report TR-2009-181, February,
2009.

[14] G. Wang, S. Yang, Y. Han, “Mashroom: end-user mashup programming
using nested tables,” in Proceedings of the 18th international
Conference on World Wide Web, Madrid, Spain, April 20 - 24, 2009.

[15] M. Resnick, J. Maloney, A. Monroy-Hermandez, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, Y.
Kafai, “Scratch: programming for all,” Communications of the ACM,
November, 2009.

[16] J. Cao, Y. Riche, S. Wiedenbeck, M. Burnett, V. Grigoreanu, “End-user
mashup programming: through the design lens,” in Proceedings of the
28th international Conference on Human Factors in Computing
Systems, Atlanta, Georgia, USA, April 10 - 15, 2010.

[17] S. K. Card, G. G. Robinson, J. D. Mackinlay, “The information
visualize, an information workspace,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems: Reaching
Through Technology, New Orleans, Louisiana, USA, April 27 - May 02,
1991.

[18] M. Li, M. Claypool, R. Kinicki, J. Nichols, “Characteristics of streaming
media stored on the Web,” ACM Transactions on Internet Technology,
5, 4 pp. 601-626, November, 2005.

[19] B. Shao, D. Renzi, P. Amon, G. Xilouris, N. Zotos, S. Battista, A.
Kourtis, M. Mattavelli, ”An adaptive system for real-time scalable video
streaming with end-to-end QoS control,” in Proceedings of The 11th
International Workshop on Image Analysis for Multimedia Interactive
Services (WIAMIS), Desenzano del Garda, Italy, Apr 12 - 14, 2010.

[20] R. Kuschnig, I. Kofler, H. Hellwagner, “An evaluation of TCP-based
rate-control algorithms for adaptive internet streaming of H.264/SVC,”
in Proceedings of the First Annual ACM SIGMM Conference on
Multimedia Systems, Phoenix, Arizona, USA, February 22 - 23, 2010.

[21] R. T. Fielding, and R. N. Taylor, “Principled design of the modern Web
architecture,” ACM Trans. Internet Technol. 2, 2, May, 2002, 115-150.

Publication III

Towards mobile multimedia
mashup architecture

M. Hartikainen, A. Salminen and J. Kallio

c©2012 IEEE. Reprinted with permission, from the Proceedings of 38th
Euromicro Conference on Software Engineering and Advanced Applications
(SEAA 2012).

Towards Mobile Multimedia Mashup Architecture

Mikko Hartikainen and Arto Salminen

Department of Software Systems
Tampere University of Technology

P.O. Box 553, FIN-33101 Tampere, Finland
Email: firstname.surname@tut.fi

Jarno Kallio

PacketVideo Finland
Hallituskatu 8, FIN-33200 Tampere Finland

Email: jarno.kallio@pv.com

Abstract—Accessing private and public multimedia content
over the web with mobile terminals can be cumbersome. To
approach this problem, we introduce an ecosystem where
the content is accessed with clients that are constructed as
mashups. Mashups are web applications that combine already
existing data into an integrated experience. In addition to
traditional mashup elements such as text and images, also
other types of multimedia artifacts – sound, video and even
small programs – can be used as content in mashups. However,
currently available methods implementing mashups do not
allow effortless access to personal data across domains or
provide means to ensure that the user experience is coherent.
This paper describes our mobile mashup architecture aimed
to solve these problems and work as a ubiquitous platform
for mobile multimedia mashups. The architecture enables a
mashup ecosystem where different content providers and client
developers can contribute. As a practical implementation, we
present a video mashup client developed for Android. In
addition, we discuss the lessons learned during the research.

Keywords-mashup; architecture; multimedia; mobile device

I. INTRODUCTION

Success of social media and other collaborative services

clearly indicate that content sharing directly between users

or via a publishing service is a necessity for great user

experiences. Moreover, multimedia content – such as videos,

music and images – is commonly consumed and shared

with mobile terminals. This motivates the development of

a multimedia mashup ecosystem architecture that enables

compelling mashup clients build on top of it.

Mashup is a web application that integrates code, data,

and other content artifacts from multiple sources over the

Web creating some increased value for the user. Tradition-

ally mashups are executed inside a web browser but other

systems can be used as a runtime environment as well. In

general, mashups are about simplicity, usability, and ease of

access [1]. A mashup can combine the content in a new,

unforeseen way, thus creating entirely new web service,

or a mashup can provide new visualization for an existing

service.

Having a mobile terminal as a target platform is a

great opportunity for mashups and other applications that

are used for personal entertainment. Taking user’s context

into account allows superior user experiences and more

relevant advertising. Sharing the experience instantly with

peers enables different scenarios in constantly changing

environments.

This paper extends and realizes ideas introduced in earlier

publications [2] and [3]. There we provided a wide back-

ground study about mashup ecosystem requirements and

challenges. In this paper we present how these challenges

and ecosystem requirements were faced and fulfilled in a

specialized case of mobile multimedia.

The goal of the ecosystem is ambitious. We target at

enabling liberal mashupping of all relevant web content

available from the most popular Web 2.0 services as well as

user’s own local area network. Architecture is desired to hide

interface complexity and to enable coherent user experience

across services. It should be possible to access the mashup

content with different mobile terminals, even those with lim-

ited capabilities. Different web-enabled platforms should be

possible to use as an environment for the client-side mashup

implementations. The result can be projected on numerous

display devices, such as other mobile devices, televisions,

video projectors, public displays, set top boxes, and home

theater systems. The system should take user preferences,

interpreted on the basis of past actions, into account, and

automatically adapt to user needs. Consequently, this paper

seeks answers to the following question:

• What kind of ecosystem architecture is needed to

achieve the goals above?

The paper is structured as follows. First, in Section 2,

we describe the related work. In Section 3, we introduce

the mashup ecosystem architecture. Section 4 provides a

brief introduction to software development on Android plat-

form, and presents the sample application implementation.

In Section 5, we discuss about lessons learned and future

work, especially ideas how the mashup ecosystem could be

expanded. Finally, in Section 6, we draw some conclusions.

II. RELATED WORK

Different mashup architectures for server- and client-

side have already been studied. A common denominator

in the existing server-side architectures is some kind of

aggregator that collects information from multiple sources

and provides it for the mashup backend. Another important

2012 38th Euromicro Conference on Software Engineering and Advanced Applications

978-0-7695-4790-9/12 $26.00 © 2012 IEEE

DOI 10.1109/SEAA.2012.28

439

issue, mashup security, has been subject to research from

numerous perspectives. In the following we briefly present

the work done on these two areas.

A. Mashup Architectures

Database-driven mashup architecture by Vancea et al. [4]

relies on an aggregator server that collects the information

from multiple sources. They determine APIs for the aggre-

gator server, called “information provider”, and a database

server that acts as a backend for web browser clients.

In [5] Zhang et al. described a multimedia mashup ar-

chitecture that utilized the CAM4Home framework (http:

//www.cam4home-itea.org/) for meta data. In addition, their

architecture has support for social meta data that is created

by the users. A core component of the architecture is

Multimedia Mashup Engine (MME) that works as an aggre-

gator between heterogeneous service repository and mashup

clients. Quality of service is ensured with the MME and a

Media Aware Network Element that works as a middlebox

adapting the video stream according to network conditions

and terminal capabilities.

Server-side enterprise mashup architecture has been stud-

ied by Lopez et al. [6]. Their architecture consists of four

layers: source access, data mashup, widgets, and widget
assembly. In addition, the architecture includes common
services, which provides general functionalities and can be

used from any layer. The result mashup developed using

this architecture is somewhat similar to a web portal with

the exception that the widgets are connected.

In a previous research [7] we introduced a general

reference architecture for client-side mashups. There we

identified five components of a client-side mashup: content
providers, data model, mashup creation, mashup manager,

and renderer. These functions can be discovered in this case

in the client implementation. For instance, the renderer in the

system is changeable and clearly a separate module.

B. Mashup Security

In [8] Bader et al. identify numerous security aspects of

enterprise mashup architecture. They point out that mashups

handling sensitive data of an organization should store data

strictly on organization’s own storage services, as using an

external storage service in a cloud might cause unwanted

information disclosure. One should bear in mind that even

non-sensitive data can expose delicate information when

aggregated. Moreover, mashup robustness and stability are

especially important in an enterprise setting. Therefore,

SOA-based (Service Oriented Architecture) approach to

creating mashups is recommended. Downside of the SOA-

based approach is complexity for unexperienced users that

may not be able to build mashups on top of a complex SOA

stack. Trustworthiness of mashups is significant as well,

when they are used in a business setting. Unfortunately,

when mashups utilize external web resources, confirming

resource trustworthiness is typically difficult or even impos-

sible. Therefore, authors of [8] suggest utilizing a central

service governance, which would control services that are

used through mashups. Furthermore, when mashups are

used to access organization’s private data, authentication

of mashup users and restricting unauthorized users from

accessing sensitive data is vital.

Service access control API that aims to better mashup

security has been studied by Hashimoto et al. [9]. The

SAXAE API provides functions to the mashup to retrieve

protected, non-public resources securely. This allows the

mashup to access user’s private data, for example on some

social service, in secure fashion.

III. MASHUP ECOSYSTEM ARCHITECTURE

As pointed out in the background study, an aggregator-

based architecture has been successful in the previous so-

lutions. Similarly to these solutions, our ecosystem archi-

tecture (illustrated in Fig. 1) utilizes a server-side aggre-

gator. However, significant part of the mashup composing

logic resides on the client-side instead of the pure server-

based model where the result mashup is only rendered

on a web browser. This hybrid approach has numerous

benefits in our setting, where the clients are executed in

mobile terminals. First, it enables to run mashups even on

devices that do not support all the web technologies. For

instance, most of the video content in the Web is available in

Adobe Flash (http://www.adobe.com/software/flash/about/)

or HTML5 [10] video, but the support for these technologies

was limited during the study. Second, clients that are able

to take user context into account can be implemented using

our approach without need for extensive data transferring

with the server. Third, enabling the client to work without

a connection to the Web can be achieved using our hybrid

model, where the client-side application can function inde-

pendently to access content in the local area network or the

terminal’s file system.

A central component of the mashup architecture is the

Mashup Aggregator Server (MAS), which is implemented

as a cloud service. It crawls trough different web services

and creates a database with metadata and links to web

content items. In addition, it connects to different domains

and can publish public content from those too. Currently,

MAS supports only video content.

The Mashup Client (MC), installed into user’s mobile

terminal, composes the mashup from content artifacts. It

communicates with the MAS and gains access directly to

the web content. In addition to aggregated content, it can

browse content from servers in the local area network and

use it as well. The third source of content are servers

in other domains, provided that the MAS has necessary

information about them. Naturally, if the MC has access

to local filesystem, local files can be used.

440

Figure 1. Mashup ecosystem architecture

Another feature that mashup clients can have is capability

to utilize other displaying devices found on local network

to render the result mashup. We call passing the result

mashup to the rendering device “beaming”. MC’s beaming

offers coherent way to show videos on arbitrary rendering

devices with a modern graphical user interface. In the current

implementation the MC can control any DLNA compatible

renderer to play the mashupped videos.

Interfaces. The architecture interfaces rely loosely on

REST principles [11]. Architecture can be categorized as

a REST-RPC hybrid architecture [12]. Unlike pure REST

architectures, where the communication between server and

client is implemented with GET, POST, PUT, and DELETE

methods, here only GET method is used. GET is intended

to be used for safe operations, which do not change the

data. Therefore, using GET for all communications has

side effects, for instance how the server cache can be

optimized [12]. However, it is common that Rich Internet

Application (RIA) frameworks and web runtimes do not

implement all HTTP methods. For instance some versions

of Adobe Flex (http://www.adobe.com/products/flex/), Java
ME (http://www.oracle.com/technetwork/java/javame/), and

Qt Quick (http://qt.nokia.com/qtquick/) are lacking some of

the methods. In this sense, using only GET method in the

architecture interfaces is convenient even though it is not

RESTful.

Mashup developer can choose between XML and JSON

data formats to use them over HTTP for data exchange. This

is convenient as XML is widely adopted and standardized by

W3C, and parsers for XML are often readily available in dif-

ferent runtime environments. However, using data-oriented

JSON has certain advantages in contrast to XML which is

more document-oriented. One benefit that JSON has is the

smaller data exchange overhead, which is important when

transferring data over mobile networks where the network

traffic can be expensive.

Portability. Portability has been a design goal for MAS.

Because of the interfaces of MAS have been designed using

standard web technologies such as JSON, XML, and HTTP,

mashup clients can be implemented on any web-enabled

platform with a capability to render HTML. Some MAS

functionality requires showing rich media content and in

this case HTML is used. However, if native technologies

are used, a client needs to be reimplemented for mobile

terminals with different operating systems, which can be

considered as a downside. This can be avoided by utilizing

some cross-platform technology for the client-side mashup.

MAS provides several URLs for content items (currently

videos) to enable better support for different kinds of clients

and rendering devices. Each video can be in various for-

mats. Choosing the correct URL depends on many factors

described as follows.

• Resolution. Tablets and external displays have much

bigger resolution than low-end mobile devices. Choos-

ing a video based on resolution will save processing

power, battery life and consumes less bandwidth. Res-

olution can typically vary from 240x320 to 1920x1080

(27 times difference in the amount of pixels).

• Bandwidth. Slow mobile network connections are not

always enough to stream high quality videos. Thus,

lower quality video could be more suitable when the

bandwidth is low.

• Media Format. Mobile terminal’s native video player

supports typically only limited amount of codecs. Sup-

port varies based on the runtime environment used. For

instance, different browsers support HTML5 video in

different codecs, and in Android devices the support

varies between operating system versions and manu-

facturers.

• Player. The best video format can differ based on the

player used. For example, videos in Adobe Flash format

are suitable for desktop, but support for Flash in mobile

devices is limited. Therefore, a client needs to use

different URL for playing a video in mobile device

and for sharing the video link to social media sites or

beaming to a rendering device.

• Location. Service providers can restrict some videos to

be shown in a limited amount of countries, and MAS

as well as clients can be located in different coun-

tries. Therefore, MAS can crawl videos from service

providers that are not available to all clients due to

geolocation restrictions.

• Streaming protocol. Videos typically use either RTSP

[13] or HTTP Progressive download protocol [14] for

streaming. Some implementations of mobile device

video players do not support RTSP URLs.

441

Performance. The architecture addresses the problem of

varying client performance by providing multiple resource

URLs for the client to choose from as we described above.

At this point, videos are not transcoded and therefore there

will be no delay caused by transcoding. Response time of

the MAS is affected by the following variables:

• performance of network,

• performance of accessing MAS databases, and

• traffic caused by other users.

Security. MAS security is based on requiring authenti-

cation for clients. HTTP digest access authentication [15]

is used for authenticating clients. This solution is relatively

light-weight, but less secure when compared to strong au-

thentication protocols such as public-key [16] or Kerberos
[17] authentication. However, it is more secure than tradi-

tional digest authentication schemes such as basic access au-
thentication [15] or CRAM-MD5 [18]. Digest authentication

encrypts user’s password and leaves content of a message

unencrypted, unlike stronger protocols, which encrypts also

the content of the message. This is sufficient solution in basic

functionality, which does not require information about the

user (e.g. searches). However, when personal information

is transferred between the client and servers, stronger au-

thentication, such as public-key or Kerberos, is necessary

to be implemented. Moreover, TLS [19], which is typically

implemented on top of transport layer protocols, can be used

in combination with HTTP digest and, therefore, added later

when needed.

Authentication is invariably required when a request is

made to MAS API. MAS utilizes user accounts to iden-

tify different mashup clients, and it supports user account

creation directly from the client. The account creation is

implemented with a simple HTML form. Social network

services, such as Facebook (http://www.facebook.com) or

Twitter (http://www.twitter.com), may require authentication

as well when a content artifact is shared to these services.

In this case, MAS forwards authentication page from the

service to the client. After authentication, the client can

communicate freely to the service without need for re-

authentication.

Coherent user experience. Another design target of

the mashup architecture was coherent user experience of

client applications. To enable this, MAS provides a common

API for numerous inconsistent service interfaces and social

media services. As a result, clients can have fast and uniform

access to all crawled metadata. However, MAS store only

metadata of web content, but not actual web content items.

Thus, quality of accessing the web content items always

depends on the service providers. MAS can store user

specific data as well. For instance, clients can use MAS

to store user’s bookmarked content and playlist data. This

enables accessing the bookmarked content and playlists

across different clients.

Figure 2. Video Mashup Client

IV. VIDEO MASHUP CLIENT IMPLEMENTATION

Video Mashup Client (ViMC), shown in Fig. 2, is im-

plemented as a native Android (http://www.android.com/)

application. Together ViMC and MAS create a video mashup

and offer fast access to video content in the Web, local

network, and user’s device. Naturally, ViMC can play video

content in the mobile terminal itself, but it is also capable of

rendering the video into any discovered DLNA compatible

remote device. ViMC uses MAS for searching and browsing

videos, manipulating live playlists (referred to as channels),

storing bookmarks, and sharing content to social network

services. In the following, we present the mashup client

features in more detail.

Playing. By default ViMC uses Android’s default video

player implementation to play videos, but the client architec-

ture allows using local 3rd party video players and remote

players as well. If the default player is used, other videos re-

lated to the currently played one are displayed on the screen

when the video is paused. DLNA (http://www.dlna.org/)

compatible remote players (e.g. televisions, set top boxes,

or public displays) can be used to show videos, and the

client is able to search them from the local network.

Searching. ViMC utilizes MAS’s Search API for search-

ing for videos with keywords. The Search API offers flexible

442

way to aggregate arbitrary web video services under one

common API, and it provides fast indexing of crawled

videos. Search results can be ordered based on video meta

data, and by default video view count is used as order

basis. Furthermore, search operations can be done for web

service content through the MAS. MAS can contain an

arbitrary amount of different source services, and each of

them typically has different way to access the content.

Consequently, client gets several benefits from using MAS.

First, less code is needed because there is no need for access

more than one service. Second, user interface responsiveness

improves because one call to the backend server can return

(filtered and/or ordered) results from multiple services in one

response.

Browsing. ViMC enables user to browse aggregated web

videos through video searches such as “popular videos”,

“featured videos”, and “more like this”. The user can browse

more videos related to current video. This search gives a

list containing videos with matching keywords to currently

played one. In addition, user can browse digital media

servers (DMS) found from the local area network. For

instance, all content in DLNA compatible servers can be

browsed and searched for with the client.

Creating Channels. User can create a channel based

on video keywords or search terms. Channels are saved

into the MAS. They work like live playlists, which update

items in the playlist according to the changes in the MAS.

Currently, there is no support for reporting of a new content

in the channel and there is no indication for user when the

content is changed. Moreover, channels can contain only

web content.

Bookmarking. MAS has a bookmarking mechanism that

can be used to create a collection of favourite videos.

Bookmarks can be fetched from MAS in alphabetical order

or by date. After authentication, the bookmark collection

can be accessed with ViMC. New bookmarks can be created

in ViMC’s playing screen. In contrast to channels that are

dynamic lists of multiple videos, bookmarks are static and

refer to a single video.

Sharing. MAS offers a Sharing API for sharing aggre-

gated videos to social network services such as Twitter and

Facebook. ViMC utilizes this API to allow user to share

videos with other users directly in the client application. In

addition to social network services, videos can be shared

via e-mail and SMS by using Android’s core libraries.

Currently sharing means sending a link to a video to another

user or publishing the link as a message in Facebook or

Twitter. Benefit of using the aggregator server for accessing

social network services over accessing them directly is

possibility to access them through a single API. When a

new social network service is introduced, there is no need

to make changes to client side, as the MAS handles the

communication with the service and provides the necessary

interface for clients.

V. DISCUSSION

In this section we briefly discuss about the lessons learned

during the development of the mashup architecture and

ViMC. In addition we briefly present some ideas for future

improvements.

A. Lessons Learned

Important design targets of the system were portability

and coherent user experience. The MAS provides multiple

URLs through an open API for better portability, but the

ViMC implementation is very platform specific. However,

platform specific techniques used in the client application

made the result mashup more responsive and the user

experience more polished. Furthermore, the implementation

revealed the need for locating more suitable URLs, which

is discussed about in the following.

Locating a suitable URL. As the MAS sometimes fails

providing a suitable URL for ViMC, there may be need for

a method for solving a better URL for a content artifact, a

video, for instance. Some service providers offer an API to

locate several URLs, from which a developer can choose the

URL that fits best for the current need, based on the URL

provided by MAS. There is a possibility to use these APIs

to located a URL, which ViMC is capable of playing.

Fig. 3, explained in the following, shows an example how

the method locating more suitable URL could work.

1) First, ViMC requests a video from MAS.

2) ViMC does not support the URL for Flash video

provided by MAS and begins to locate more suitable

URL.

3) ViMC gets more information from service provider

about the URL and tries to get a URL that best fits to

ViMC needs.

However, there is a risk that when the service provider’s

API changes, the method stops to work, and all the videos,

which depend on this service, will become unavailable.

Portability of the ViMC Even though Android applica-

tions are written in Java, hardly any code in ViMC can be

used outside of Android due to two reasons. First, ViMC’s

UI strongly relies on Android framework. Second, ViMC

does not contain business logic, which is executed on server-

side. Android does support Java Native Interface, which

allows Android applications to run components written in

C or C++ languages. This kind of components would have

been more portable to other mobile devices, which typically

use C compilers.

B. Future work

Expanding the mashup architecture into other domains

than video is included in our future plans. Providing links to

relevant web content could provide a great user experience

for mashup users. For instance, if a music video was played,

a link to music store providing the song to be downloaded

and articles discussing the artist could be shown.

443

Figure 3. Method for locating a more suitable URL

Many of the challenges discussed earlier [2] could be

tackled by using video transcoding. Transcoding is a process

where one multimedia object is converted into another. In

this case it would mean re-encoding a video into more suit-

able format. According to [20], three transcoding categories

can be identified based on the location of the operation: 1)

server transcoding (i.e. external web service), 2) intermediate

proxy transcoding (i.e. MAS) or 3) client transcoding (i.e.

MC). In our architecture, we have no desire to use an

external web service, and transcoding needs to be located in

MAS or MC. Due to capabilities and low network bandwidth

of mobile networks, transcoding is not typically done in the

mobile device [21]. Intermediate proxy transcoding could be

suitable in our case and can be seen as subject of further

study.

Unlike ViMC, MAS has been implemented with cross-

platform compatibility in mind. It utilizes open standards

such as HTTP, REST, JSON, and XML, which makes

possible to create client applications on practically any web-

enabled platform available. Interesting possibility – that we

plan to explore further – is creating the mashup client with

regular web application development technologies including

HTML, JavaScript, and CSS. This would allow reusing the

same code base extensively in different clients. Furthermore,

the upcoming HTML5 standard [10] includes an element for

presenting video content, and we expect that utilizing this

technology in client implementations could reduce the need

to support multiple video formats as well as need to perform

video transcoding.

VI. CONCLUSION

In this paper, we described our mobile multimedia mashup

ecosystem architecture and implementation of a video

mashup client for Android platform. In addition, we briefly

discussed about the lessons learned during the development

of the mashup client.

Our target was set to form an ecosystem that enables

composing mashups of all relevant web content available.

Thanks to the aggregator-based hybrid architecture, the

ecosystem can be diversified with new web services and

mashup clients. The architecture enables mashup clients to

work without constant network connection as well as take

user’s context into account without communicating it to

the server-side. Coherent user experience was pursued with

MAS providing a set of URLs for each web content artifact,

which helped to tackle with varying user operating situations

and device configurations.

The smart mashup client is capable of accessing videos

provided by numerous web services. In addition, videos from

the local area network or terminal’s file system can be ac-

cessed as well. The mashup adaptively suggests new videos

for the user based on his/hers earlier actions, and provides

means for bookmarking videos and creating playlists out of

them. The result mashup can be beamed into any renderer

device with DLNA compatibility.

Our project has been successful in the domain of web

videos. Expanding the ecosystem to include other forms of

multimedia is in the scope of our future work. Another

area where further work is needed is video transcoding.

Furthermore, developing more cross-platform solution for

the client-side with upcoming HTML5 technologies is an

interesting possibility that requires additional research.

REFERENCES

[1] J. Yu, B. Benatallah, F. Casati, F. Daniel, “Understanding
mashup development,” IEEE Internet Computing, pp. 44-52,
Sept./Oct. 2008.

[2] A. Salminen, J. Kallio and T. Mikkonen, “Towards mobile
multimedia mashup ecosystem,” In Proceedings of IEEE
ICC 2011 Workshop on Advances in Mobile Networking -
“Towards a Next Generation Mobile Core Network”, pp. 1–
5, June 2011.

[3] A. Salminen and T. Mikkonen, “Mashups – Software ecosys-
tems for the web era,” In Proceedings of the 4th Workshop on
Software Ecosystems (IWSECO 2012). Springer, June 2012.

[4] A. Vancea, M. Grossniklaus, and M. C. Norrie, “Database-
driven web mashups,” In Proceedings of the Eighth Interna-
tional Conference on Web Engineering (ICWE ’08). IEEE
Computer Society, pp. 162–174, 2008.

[5] H. Zhang, Z. Zhao, S. Sivasothy, C. Huang, and N. Crespi,
“Quality-assured and sociality-enriched multimedia mobile
mashup,” EURASIP Journal on Wireless Communications
and Networking, vol. 2010, Article ID 721312, 11 pages,
2010.

[6] J. López, A. Pan, F. Bellas and P. Montoto, “Towards a
reference architecture for enterprise mashups”. Architecture,
2(2), pp. 67–76, 2008.

444

[7] T. Mikkonen and A. Salminen, “Towards a reference architec-
ture for mashups,” In Proceedings of the 10th Confederated
international conference on On the move to meaningful in-
ternet systems, Second International Workshop on Variability,
Adaptation and Dynamism in software systEms and seRvices
(VADER 2011), R. Meersman, T. Dillon, and P. Herrero
(Eds.). Springer-Verlag, Berlin, Heidelberg, pp. 647–656,
2011.

[8] G. Bader, A. Anjomshoaa, and A. M. Tjoa, “Privacy aspects
of mashup architecture,” in Proceedings of Social Computing
/ IEEE International Conference on Privacy, Security, Risk
and Trust, pp. 1141–1146, 2010.

[9] R. Hashimoto, N. Ueno, and M. Shimomura, “A design of
usable and secure access-control APIs for mashup applica-
tions,” in Proceedings of the 5th ACM Workshop on Digital
Identity Management, Nov. 2009.

[10] I. Hickson (Ed.), “HTML5 – A vocabulary and associated
APIs for HTML and XHTML,” W3C Working Draft (http:
//www.w3.org/TR/2012/WD-html5-20120329/), March 2012.

[11] R.T. Fielding and R.N. Taylor, “Principled design of the
modern web architecture,” ACM Trans. Internet Technol.
(TOIT) 2 (2), pp. 115–150, 2002.

[12] L. Richardson and S. Ruby. Restful web services (First ed.).
O’Reilly, 2007.

[13] H. Schulzrinne, A. Rao and R. Lanphier, “RFC 2326: Real
Time Streaming Protocol (RTSP),” April 1998.

[14] D. Kaspar, K. Evensen, P. Engelstad, A.F. Hansen, P.
Halvorsen, and C. Griwodz, “Enhancing video-on-demand
playout over multiple heterogeneous access networks,”
Consumer Communications and Networking Conference
(CCNC), pp. 1–5, Jan. 2010.

[15] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P.
Leach, A. Luotonen, and L. Stewart, “RFC 2617: HTTP
authentication: basic and digest access authentication,” June
1999.

[16] W. Diffie and M. Hellman, “New directions in cryptography,”
IEEE Transactions on Information Theory, Vol. IT-22, No. 6.,
pp. 644-654, 1976.

[17] C. Neuman, T. Yu, S. Hartman, and K. Raeburn, “RFC
4120: The Kerberos network authentication service (V5),”
July 2005.

[18] J. Klensin, R. Catoe, and P. Krumviede, “RFC
2195: IMAP/POP AUTHorize extension for simple
challenge/response,” Sept. 1997.

[19] Dierks, T, and E Rescorla. “RFC 5246 - The Transport Layer
Security (TLS) Protocol Version 1.2.” IETF 2008.

[20] V. Cardellini, P.-S. Yu, and Y.-W. Huang, “Collaborative
proxy system for distributed web content transcoding,” in
ACM CIKM, Mar. 2000.

[21] H. Bharadvaj, A. Joshi, and S. Auephanwiriyakul, “An active
transcoding proxy to support mobile web access,” in Proceed-
ings of 17th IEEE Symp. Reliable Distributed Systems, 1998.

445

Publication IV

Lively mashups for mobile
devices

F. Nyrhinen, A. Salminen,

T. Mikkonen and A. Taivalsaari

c©2009 Springer. Reprinted with permission, from the Proceedings of the
First International Conference on Mobile Computing, Applications and
Services (MobiCase 2009).

S. Ystad et al. (Eds.): MobiCASE 2009, LNICST 35, pp. 123–141, 2010.
© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

Lively Mashups for Mobile Devices

Feetu Nyrhinen1, Arto Salminen1, Tommi Mikkonen1, and Antero Taivalsaari2

1 Tampere University of Technology, Korkeakoulunkatu 1, FI-33720 Tampere, Finland
{feetu.nyrhinen,arto.salminen,tommi.mikkonen}@tut.fi

2 Sun Microsystems Laboratories, P.O. Box 553 (TUT), FI-33101 Tampere, Finland
antero.taivalsaari@sun.com

Abstract. The software industry is currently experiencing a paradigm shift to-
wards web-based software and web-enabled mobile devices. With the Web as
the ultimate information distribution platform, mashups that combine data, code
and other content from numerous web sites are becoming popular. Unfortu-
nately, there are various limitations when building mashups that run in a web
browser. The problems are even more challenging when using those mashups
on mobile devices. In this paper, we present our experiences in building mash-
ups using Qt, a Nokia-owned cross-platform application framework that pro-
vides built-in support for web browsing and scripting. These experiences are
part of a larger activity called Lively for Qt, an effort that has created a highly
interactive, mobile web application and mashup development environment on
top of the Qt framework.

Keywords: mobile web applications, mashup development, Qt, Lively for Qt.

1 Introduction

In the past few years, the Web has become a popular deployment environment for new
software systems and applications such as word processors, spreadsheets, calendars
and games. In the new era of web-based software, applications live on the Web as
services. They consist of data, code and other resources that can be located anywhere
in the world. Furthermore, they require no installation or manual upgrades. Ideally,
applications should also support user collaboration, i.e. allow multiple users to interact
and share the same applications and data over the Internet.

An important realization about web applications is that they do not have to live by
the same constraints that characterized the evolution of conventional desktop soft-
ware. The ability to instantly publish software worldwide, and the ability to dynami-
cally combine data, code and other content from numerous web sites all over the
world will open up entirely new possibilities for software development.

In web terminology, a web site that combines (“mashes up”) content from more
than one source is commonly referred to as a mashup. Mashups are content aggre-
gates that leverage the power of the Web to support instant, worldwide sharing of
content. Typical examples of mashups are web sites that combine photographs or
maps taken from one site with other data (e.g., news, blog entries, weather or traffic
information, or price comparison data) that are overlaid on top of the map or photo.

124 F. Nyrhinen et al.

Mashups usually run inside a web browser. However, because the web browser
was originally designed to be a document viewing tool – not an environment for
highly interactive applications – there are challenges when running web applications
and mashups that behave in a highly interactive fashion. Support for user interface
widgets can also be limited. Furthermore, poor performance of the web browser can
be a major issue especially when running mashups in mobile devices. On mobile
devices, usability issues cannot be ignored either [9].

In this paper, we present our experiences in developing practical, compelling web
mashups, with a special emphasis on making those mashups work well on mobile
devices. The work reported here is part of a larger activity called Lively for Qt
(http://lively.cs.tut.fi/qt) – a project that has created a highly interactive, mobile web
application and mashup development environment for the Qt cross-platform applica-
tion framework (http://www.qtsoftware.com/). The Qt framework was recently ac-
quired by Nokia, and versions of the framework have already been announced for
Nokia's device platforms.

The rest of the paper is structured as follows. In Section 2 we summarize the exist-
ing environments and tools available for mashup development. In Section 3 we pro-
vide an overview of the Qt platform from the viewpoint of web application and
mashup development. Section 4 contains a description of the most interesting mash-
ups and other applications that we have written, including some source code of one of
the applications. In Section 5, we discuss our experiences and lessons learned during
the development of those mashups. Finally, Section 6 concludes the paper and out-
lines some future directions.

2 Existing Mashup Development Environments and Tools

The landscape of mashup development technologies is still rather diverse, reflecting
the rapidly evolving state of the art in web development. Since mashups are usually
built on top of existing content available on the Web, mashups can be composed
manually using the classic DHTML technologies available in every commercial web
browser: HTML, Cascading Style Sheets (CSS), JavaScript and the Document Object
Model (DOM) [6]. However, since the actual representation of data, behavior and
content can vary dramatically between different web sites, manual mashup construc-
tion can be extremely tedious, fragile and error-prone. For instance, since web sites do
not generally present any well-defined interfaces that would clearly separate the public
parts of the sites from their implementation details, there are usually few guarantees
that the behavior and the data representations used by those web sites would remain the
same over time.

To facilitate mashup development, a number of tools are available. In principle,
mashups can be developed using general-purpose web application development plat-
forms such as Adobe AIR [15], Google Web Toolkit [8], Microsoft Silverlight [12] and
Sun Microsystems' JavaFX [1]. However, in practice the capabilities of these general-
purpose web programming environments are still somewhat limited when it comes to
the flexible extraction and combination of data from different web sites. The same
comment applies also to general-purpose web content development tools including for
example Adobe Creative Suite (http://www.adobe.com/products/creativesuite/) and
Microsoft Expression (http://www.microsoft.com/expression/).

 Lively Mashups for Mobile Devices 125

There are a number of existing tools that have been designed specifically for
mashup development. Such tools include (in alphabetical order):

• Google Mashup Editor (http://code.google.com/gme/),
• IBM Mashup Center (http://www.ibm.com/software/info/mashup-center/),
• Intel Mash Maker (http://mashmaker.intel.com/),
• Microsoft Popfly (http://www.popfly.com/),
• Open Mashups Studio (http://www.open-mashups.org/),
• Yahoo Pipes (http://pipes.yahoo.com/).

We have reported our experiences in using these systems in an earlier paper [13]. In
analyzing the systems, some common themes and trends have started to emerge. Such
trends include:

• Using the web browser not only to run applications/mashups but also to develop
them. For instance, Google Mashup Editor, Microsoft Popfly and Yahoo Pipes use
the web browser to host the development environment and to provide seamless
transition between the development and use of the mashups.

• Using visual programming techniques to facilitate end-user development. Visual
“tile scripting” and “program by wire” environments are provided, e.g., by Micro-
soft Popfly and Yahoo Pipes.

• Using the web server to host and share the created mashups. Most of the mashup
development tools mentioned above store the created mashups and applications
on a web server that is hosted by the service provider.

• Direct hook-ups to various existing web services. Since the Web itself does not
provide enough semantic information or well-defined interfaces to access infor-
mation in web sites in a generalized fashion, most of the mashup development
tools include custom-built hook-ups to existing web services such as Digg, Face-
book, Flickr, Google Maps, Picasa, Twitter, Yahoo Traffic and various RSS
newsfeeds.

So far, very little attention has been put on optimizing mashup development for mo-
bile devices. It should also be mentioned that most of the above listed mashup devel-
opment tools are still under development, e.g., in beta or some other pre-release stage,
reflecting the rapidly evolving state of the art in mashup development. Nevertheless,
many of the systems are already quite advanced and capable, and – perhaps most
importantly – a lot of fun even for children to use.

3 Qt as a Mashup Platform

As part of the broader Lively for Qt (http://lively.cs.tut.fi/qt) activity mentioned earlier,
we have created a dynamic, cross-platform mashup environment based on the Qt ap-
plication framework. The broader Lively for Qt activity is reported in a separate paper
[10]. In this section we provide an introduction to Qt, with a particular emphasis on its
suitability for mashup development.

3.1 Introduction to Qt

Qt (http://www.qtsoftware.com/) is a mature, well-documented cross-platform applica-
tion framework that has been under development since the early 1990s. Qt supports a rich

126 F. Nyrhinen et al.

set of APIs, widgets and tools that run on most commercial software platforms, including
Mac OS X, Linux and Windows. In addition, Qt is available for mobile devices based on
Nokia's Maemo Linux platform (http://maemo.org/) and Series 60 Symbian platform
(http://www.s60.com/). Qt has been used in various commercial applications before.
Examples of desktop applications built with Qt include Adobe Photoshop Elements,
Google Earth, Skype, and the KDE desktop environment for the Linux operating system.
In addition, Qt has been used in various embedded devices and applications, including
mobile phones, PDAs, GPS receivers and handheld media players.

Trolltech, the company developing Qt, was acquired by Nokia in 2008. Nokia is
currently in the process of making Qt libraries available on their phone platforms.
Nokia's market share will make Qt an extremely interesting target platform for mobile
applications as well.

From the technical viewpoint, Qt is primarily a GUI framework that includes a rich
set of widgets, graphics rendering APIs, layout and stylesheet mechanisms and associ-
ated tools that can be used for creating compelling user interfaces that run in a wide
array of target platforms. Qt widgets range from simple objects such as push buttons and
labels to advanced widgets such as full-fledged text editors, calendars, and objects that
host a complete web browser. Dozens and dozens of widget types are supported.

The GUI features of Qt adapt to the native look-and-feel of the target platform. For
instance, on Mac OS X, all the widgets look like native Macintosh widgets, while on
Windows applications utilizing the same widgets will look like native Windows ap-
plications. An essential part in enabling cross-platform GUI behavior is flexible sup-
port for widget positioning using layouts. Qt's layout components can adapt to differ-
ent sizes, styles and fonts used by the host operating system. In general, automated
layouts give significant advantage when a program is translated to other platforms and
languages. The program adapts automatically to changed text sizes and resizes wid-
gets in an aesthetically pleasant way. Additionally, since Qt supports full internation-
alization, all the locale-specific components (such as a calendar widget) automatically
adapt to the current regional settings of the target platform.

In addition to its GUI capabilities, Qt has classes for networking, file access, data-
base access, text processing, XML parsing and many other useful tasks. A multimedia
framework called Phonon is included to support audio and video playback. Qt net-
working libraries provide support for asynchronous HTTP communication familiar
from Ajax [2]. Asynchronous networking support is critical in building web applica-
tions that do not block their user interface while networking requests are in progress.

3.2 Qt and Web Development

What makes Qt relevant from the viewpoint of web development is that Qt libraries
include a complete web browser based on the WebKit (http://webkit.org/) browser
engine. The necessary DOM and XML APIs are also included to parse, manipulate
and generate new web content easily. In addition, Qt includes a fully functional
ECMAScript [4] (JavaScript) engine called QtScript. The presence of a JavaScript
engine is important, since JavaScript – along with XML – is the lingua franca of the
Web that is used by popular web service APIs such as the Google Maps API [5].

The web browser integration in Qt works in a number of different ways. For in-
stance, it is possible to instantiate any number of web browsers inside a Qt application

 Lively Mashups for Mobile Devices 127

using the QWebView API. The QWebView class provides a widget that can be used to
view and edit web documents inside applications. The data in web documents can be
manipulated using the built-in DOM and XML APIs.

To support Qt applications in any web browser, a plugin called QtBrowserPlugin
exists for embedding the Qt environment into any commercial web browser such as
Mozilla Firefox or Apple Safari. The plugin makes it possible to run Qt applications
inside a web browser, either as standalone Rich Internet Applications or alongside (or
embedded in) conventional DHTML and Ajax web content.

JavaScript support in Qt is available both inside and outside the web browser. By
default, the QtScript engine can only access those APIs that are part of the ECMAS-
cript Specification [4]. However, by using a tool called QtScriptGenerator bindings to
all the Qt APIs can be made visible to the JavaScript engine. This makes it possible to
create JavaScript applications that combine classic DHTML behavior with widgets
and other APIs offered by Qt.

3.3 Using Qt for Mashup Development

With Qt and its built-in web browser and JavaScript support, we have created a dy-
namic mashup environment that makes it possible to create mashups that can run inside
the web browser as well as native desktop or mobile “phonetop” applications. The
mashups are written in JavaScript, and they communicate with existing web services
using asynchronous networking.

The mashups can leverage the rich Qt APIs for information visualization and proc-
essing. This is important since mashup development commonly relies on a plethora of
data formats used by different web sites and services. In addition to binary image and
video formats such as GIF, JPEG, PNG and MPEG-4, textual representations such as
XML, CSV (Comma-Separated Value format), JSON (JavaScript Object Notation)
and plain JavaScript source code play a central role in enabling the reuse of web con-
tent and scripts in new contexts. Qt provides excellent capabilities for processing such
information, especially when combined with a dynamic language such as JavaScript
that allows new object types to be constructed on the fly to accommodate the different
data formats.

4 Sample Mashups

In this section we summarize the mashups that we have developed for our Lively for
Qt system. First, we provide an example that includes source code as well. Then, we
present two mashups that have been built on top of the Google Maps API [5]. Finally,
we introduce some other types of mashups. All our mashups run on desktop computers
(inside and outside the web browser), as well as in the Nokia N810 mobile device – a
handheld WiFi webpad built around Nokia's Maemo Linux platform.

In the application descriptions below, some of the screen snapshots have been
taken on the Nokia N810 device. For improved viewability, some of the snapshots
have been taken on a PC. Further information on these applications is available on our
website (http://lively.cs.tut.fi/qt).

128 F. Nyrhinen et al.

4.1 QtFlickr: Animated Flickr Photo Viewer

In order to demonstrate mashup development with Qt, this section provides a simple
example that includes source code. The application used here is called QtFlickr – a
photo viewer application that fetches images from Flickr (http://www.flickr.com/) photo
service based on keywords (photo tags) that are obtained automatically from the Twitter
(http://www.twitter.com/) microblogging service, based on current Twitter trends
(http://twitter.com/trends). Images are displayed using timer-based animation (rotation).

The general idea of this application is to automatically display images that reflect
the most actively microblogged topics in the world. For instance, when the screenshot
of the application shown in Figure 1 was taken, the most actively discussed topic in
the world was the swine flu (H1N1).

Fig. 1. QtFlickr application running on a PC

When the QtFlickr application is started, it first obtains a list of the current microb-
logging trends from Twitter. Then, the application fetches images from Flickr using the
trend names as photo tags. The actual loading of trends and images is performed asyn-
chronously using QNetworkRequest and QNetworkAccessManager classes so that the
user does not have to wait while data is being loaded. The image feed from Flickr is
parsed using the QXmlStreamReader class. The image URLs contained within the feed
are stored and the images to be shown are chosen randomly. Initially, each image is
scaled according to the size of the application window. To simplify the implementation
and to shorten the source code, only one image is displayed at a time.

Source code. The source code of the application's main class definition is shown in
Listing 1. Note that this source code is ECMAScript (ECMA standard 262 [4]) code
without any additional syntactic sugar. The Lively for Qt includes the option to also
use the more class-oriented syntax defined by the Prototype JavaScript library
(http://www.prototypejs.org/).

The main function of the application, FlickrWidget, defines the photo viewer class
and its constructor. The class is defined as a subclass of Qt's class QWidget, allowing

 Lively Mashups for Mobile Devices 129

the application to flexibly behave both as a standalone main application (main win-
dow) as well as a widget that can be embedded in other Qt components.

The FlickrWidget constructor sets up the UI components and connects the components
to the required actions. Two layout components are created to arrange widgets within the
application window. A QHBoxLayout instance is used for horizontally lining up the
QLabel widgets shown at the top of the application window. A QVBoxLayout object then
vertically arranges the QHBoxLayout object and the QLabel object holding the image
(QPixmap) to be displayed. Two separate QPixmap objects are used for images: the first
one holds the current image and the second one the image to be displayed next.

function FlickrWidget(parent) {

 // FlickrWidget is a subclass of QWidget
 QWidget.call(this, parent);

 // The image references
 this.flickrUrl = 'http://api.flickr.com/'

 +'services/feeds/'
 +'photos_public.gne?format=rss2';
 this.imageUrls = new Array();

 // The visible UI components
 this.currentTagLabel = new QLabel("", this);
 this.imageLabel = new QLabel(this);
 this.imageLabel.setSizePolicy(

 QSizePolicy.Ignored, QSizePolicy.Ignored);
 this.imageLabel.alignment = Qt.AlignCenter;

 this.imagePixmap = new QPixmap();
 this.nextPixmap = new QPixmap();

 // The timers for downloading and rotation
 this.changeTagsTimer = new QTimer(this);
 this.changeTagsTimer["timeout"].connect(this,

 this.changeTagsTimerTimeout);
 this.changeTagsTimer.start(30000); // 30 seconds

 this.fetchImageTimer = new QTimer(this);
 this.fetchImageTimer["timeout"].connect(this,

 this.fetchImageTimerTimeout);

 this.rotTimer = new QTimer(this);
 this.rotTimer["timeout"].connect(this,

 this.rotTimerTimeout);

 this.angle = 90;

 // The layout components
 var hBoxLayout = new QHBoxLayout();
 hBoxLayout.addWidget(new QLabel("Tags:"),0,0);
 hBoxLayout.addWidget(this.currentTagLabel,1,0);
 this.layout = new QVBoxLayout();
 this.layout.addLayout(hBoxLayout);
 this.layout.addWidget(this.imageLabel,1,0);

 this.resize(300,300);
 this.getTwitterTrends();
}

Listing 1. The main function (JavaScript class) FlickrWidget

130 F. Nyrhinen et al.

Three QTimer timer objects are utilized to execute functions in regular intervals.
The first timer called changeTagsTimer handles the downloading of image tags from
Twitter. The second QTimer called fetchImageTimer is used for downloading the next
image from Flickr on the background after the current image has been displayed for
five seconds. The third timer called rotTimer is used for rotating the current image.
Qt's connect function is used for creating the connections between the timers and the
callback functions that are invoked when the timers are triggered.

When the timer named changeTagsTimer timeouts, the function getTwitterTrends,
shown in Listing 2, is called to downloads the current Twitter trends. At first a URL
pointing to trend file (a JSON file available from Twitter's web site) is defined. The ac-
tual asynchronous HTTP GET request is sent using the class QNetworkAccessManager.

Parameter twitterReplyFinished defines the callback function that will be called
when the asynchronous network request has been completed. The function twitterRe-
plyFinished, shown in Listing 3, processes the JSON file that contains a list of Twitter
trends. The JSON string is parsed and the tags in it are stored in an array. When the
tags have been obtained, the function loadFeed is invoked to load images from Flickr.

The function loadFeed, presented in Listing 4, handles the loading of the Flickr
XML feed containing image URLs. At first a URL for the HTTP GET request is con-
structed by adding the user's search terms (image tags) to it. This is the URL that is
sent to the Flickr web service to obtain images. The network request and the callback
functionality are created and handled in a manner that is analogous to the functions
that were used for downloading Twitter data.

FlickrWidget.prototype.getTwitterTrends =
function() {
 var url = 'http://search.twitter.com/'
 + 'trends.json';
 var accessMgr = new QNetworkAccessManager(this);
 accessMgr["finished(QNetworkReply*)"].connect(
 this, twitterReplyFinished);
 accessMgr.get(new QNetworkRequest(
 new QUrl(url)));
}

Listing 2. Function getTwitterTrends

twitterReplyFinished = function(reply) {
 var trendJSONString =
 reply.readAll().toString();
 var trendJSONObject =
 eval('(' + trendJSONString + ')');
 var tags = new Array();
 for(i=0;i<trendJSONObject.trends.length;i=i+1) {
 tags.push(trendJSONObject.trends[i].name);

 }
 this.loadFeed(tags);
}

Listing 3. Function twitterReplyFinished

 Lively Mashups for Mobile Devices 131

The function flickrReplyFinished, presented in Listing 5, reads the contents of the
HTTP reply utilizing the QXmlStreamReader class. The image URLs found in the
HTTP reply are parsed and stored in the imageUrls array. The actual images are then
downloaded using a function called showRandomImage. Its behavior is analogous to
the loadFeed function, so the code is not presented here.

To support image animation (rotation), the QTimer object stored in the rotTimer
variable invokes a function called rotTimerTimeout (shown in Listing 6) every 50
milliseconds. The function utilizes a QTransform object to rotate the currently dis-
played image. Qt's fast transformation mode is used instead of smooth transformation
to improve animation performance on mobile devices at the cost of the quality of the
displayed images. If the angle of rotation is 90 or 270 degrees, the image is projected
sideways and is invisible to the user. At that point the image can be switched to the
next one.

Since image rotation is rather computation-intensive, it is not well suited to
low-end mobile devices. We have used it in this application, because it gives a rather

flickrReplyFinished = function(reply) {
 var xml = new QXmlStreamReader();
 xml.addData(reply.readAll());

 while (!xml.atEnd()) {
 xml.readNext();
 if (xml.isStartElement()) {
 if (xml.name() == "enclosure") {
 this.imageUrls.push(
 xml.attributes().value("url").toString());
 }
 }
 }
 /* fetch next image after 3 seconds */
 this.fetchImageTimer.start(3000);
}

Listing 5. Function flickrReplyFinished

FlickrWidget.prototype.loadFeed = function(tags) {
 this.imageUrls = [];
 var currentTag = tags[Math.floor(
 Math.random()*tags.length)];
 var url = this.flickrUrl +"&tags=" +currentTag;
 this.currentTagLabel.text = currentTag;
 var accessMgr = new

 QNetworkAccessManager(this);

 accessMgr["finished(QNetworkReply*)"].connect(
 this, flickrReplyFinished);
 accessMgr.get(
 new QNetworkRequest(new QUrl(url)));
}

Listing 4. Function loadFeed

132 F. Nyrhinen et al.

realistic view of the limited processing power and the graphics capabilities of the mo-
bile device and its software stack.

4.2 QtWeatherCameras: Live Road Weather

QtWeatherCameras is a mashup that utilizes the Google Maps JavaScript API and the
road weather camera information available from Finnish Road Administration
(http://www.tiehallinto.fi) – the government branch in Finland that is responsible for
the highway network and road maintenance. The application utilizes the Google Maps
API to calculate an optimal route between two chosen points on the map of Finland.
The application then obtains information about the nearest road weather cameras along
the route, and displays those cameras as markers on the map (see Figure 2). When the
user clicks on any of the markers on the map, a live image and current weather condi-
tions from the selected camera are fetched.

The displayed weather conditions include air temperature, road surface temperature
and rain measurements. The weather camera image and weather conditions are dis-
played using a collapsible, semi-transparent widget placed over the map. The map
underneath can be panned and zoomed freely.

At the implementation level, the QtWeatherCameras mashup uses Qt's QWebView
web browser widget that has been placed in a QVBoxLayout layout component to
allow smooth resizing of the application. The QWebView widget displays the map
images from the Google Maps API.

After the user has selected a weather camera from the map, the application opens a
semi-transparent widget called ImageViewer on top of the main widget. The widget
consist of two QLabel components, a QTextBrowser and a QPushButton widget. The
first QLabel is used for displaying the name of the weather camera. The image of the

FlickrWidget.prototype.rotTimerTimeout=function(){

 // When current image is drawn sideways,
 // switch to the next image
 if (this.angle % 90 == 0 ||
 this.angle % 270 == 0) {

 // Switch to the next image
 this.imagePixmap =
 new QPixmap(this.nextPixmap);
 }

 // Perform image rotation
 var trans = new QTransform();
 trans.rotate(this.angle, Qt.YAxis);
 trans.rotate(this.angle, Qt.ZAxis);

 // Display the image
 this.imageLabel.setPixmap(
 this.imagePixmap.transformed(
 trans, Qt.FastTransformation));
}

Listing 6. Function rotTimerTimeout

 Lively Mashups for Mobile Devices 133

camera is loaded into the second QLabel widget. The QTextBrowser widget is used
for displaying weather conditions from the nearest weather station. Although it looks
like a simple text box, the widget is a full-fledged rich text browser that accepts any
HTML-formatted string as a parameter, and also supports hypertext navigation. The
QPushButton widget is used for minimizing and expanding the ImageViewer widget.
In addition, the mashup utilizes a widget styleSheet property that defines the customi-
zations to the widgets' style, including their transparency.

Fig. 2. QtWeatherCameras application running on a PC

Images and weather information are downloaded from the web server of Finnish
Road Administration. Because the Finnish Road Administration does not provide any
well-defined API for accessing the weather camera information, rather heavy parsing is
needed in the QtWeatherCameras application to digest the information. Locations of
road weather cameras are loaded into an array upon application startup. When a new
route is created by the user, the application performs the selection of the nearest
weather cameras and weather stations locally using the preloaded information. When
the user clicks a marker representing a camera, web page containing camera data is
loaded and parsed. Weather camera image will be passed on to the ImageViewer wid-
get. The data from the nearest weather station is also parsed and passed to the Image-
Viewer.

4.3 QtMapNews: Geotagged RSS Feed Viewer

QtMapNews is a mashup that displays geotagged news items and other geotagged
information utilizing the Google Maps API (see Figure 3). The application includes a
QTreeWidget (tree view) component that lists a selection of predefined geotagged RSS
feeds:

134 F. Nyrhinen et al.

• Earthquakes: All the Magnitude 5 or greater earthquakes in the world in the past
seven days.

• Emergencies: The last one hundred incidents/emergencies in Finland based on
information available from Finnish Rescue Service (http://www.pelastustoimi.fi).

• News: Geotagged news from CNN, Yahoo and Yle (Finnish Broadcasting
Service).

Fig. 3. QtMapNews application running on Nokia N810

The user can add more RSS feeds by pressing a QPushButton labeled “Add...”,
which will open a simple dialog to enter a new RSS feed. If the new feed is not a geo-
coded GeoRSS feed, the QtMapNews application uses a publicly available RSS to
GeoRSS converter service (http://www.geonames.org/rss-to-georss-converter.html) to
geocode news items contained within the RSS feed. After the geocoding process, the
items in the feed are displayed on the map as markers. When the user clicks on a
marker, an overview of the news item is displayed on the map.

An interesting additional feature of the QtMapNews application is that it includes
an embedded web browser to display more detailed information. Whenever the user
clicks on a map item that contains an URL, a web browser view is opened inside the
QtMapNews application (on top of the map) to display the contents of that web page.
The web browser is implemented using a QWebView widget that is displayed on top
of the map view when necessary.

4.4 QtScrapBook: Web Camera Scrapbook

QtScrapBook mashup (Figure 4) is a visual scrapbook that can be used for collecting
and displaying static or dynamic images from the Web. The application is intended
primarily for keeping track of the user's favorite web cameras. The application uses
tabs (a QTabWidget object) to display multiple images from the web or local file
system. To conserve screen space and to allow the application to be used on a
mobile device, only a single image (a single tab) is displayed at a time. Images are
updated on regular intervals based on a user-defined interval value that can be adjusted
using a QSlider widget. A QTimer object is used for keeping track of time between
updates. Images are fetched asynchronously utilizing the QNetworkRequest and
QNetworkAccessManager classes.

 Lively Mashups for Mobile Devices 135

Fig. 4. QtScrapBook application running on a PC

The user can add new images and webcams to the application by dragging them
from a web browser or from the file explorer of the host operating system. At the im-
plementation level, this is accomplished using Qt's built-in drag-and-drop mechanism
that enables the sending of drop events to the application. Every drop event holds
MIME data that can be used for determining if the application should handle the event.
In this case, the application accepts only those drop events that contain a web address
(URL) or a path to a local file.

Image rendering within the QtScrapBook application is performed using the
QPainter class and its drawImage method. This makes it possible to resize and scale
images flexibly. When the user changes the size of the application, a paint event is
sent to the application implicitly. The drawImage method is then invoked to
(re)render the current image. Rendering is performed in the Qt.KeepAspectRatio
mode so that the aspect ratio of the original image is always preserved. Furthermore,
we utilize bilinear filtering (Qt.SmoothTransformation mode) to ensure smooth resiz-
ing of graphics.

4.5 QtComics: Comic Strip Viewer

QtComics application collects and displays comic strips from all over the world based
on RSS feeds published on the Web. When the application is started, the user can select
from a set of feeds that contain multiple comic strips. The selection is performed using a
popup list (a QComboBox object) that lists the available feeds. To conserve screen
space, the application displays only one strip at a time, as shown in Figure 5. The comic
shown in this figure is from XKCD (http://xkcd.com/); reprinted with permission.

136 F. Nyrhinen et al.

Fig. 5. QtComics application running on Nokia N810

At the implementation level, the QtComics application uses the QNetworkAccess-
Manager and QtNetworkRequest classes to download the RSS feed asynchronously.
The feed is parsed with a QXmlStreamReader object. A typical comic strip RSS feed
item contains an HTML formatted string. The HTML code found inside the RSS feed
item elements is stored into an array. The first array element is then shown inside
QWebView web browser component. The QWebView object downloads content de-
fined in the HTML code asynchronously and displays it on the screen. Thanks to the
maturity of the Qt APIs used for accomplishing all this, the source code of the QtCom-
ics application is very short, only about 180 lines of JavaScript code.

5 Experiences and Discussion

In addition to the mashups described in the previous section we have developed a
number of other mashups and web applications. These applications range from vari-
ous map-based mashups to sports news tracking, weather forecast applications, media
players and games. For instance, one of the applications is a mobile audio player that
automatically collects artist information and other related information from different
web sites. In the Web era, most of such information is available on the Web, albeit not
necessarily in an easily digestible form.

All the applications have been written in JavaScript, utilizing the web browser, the
JavaScript engine and the rich APIs provided by the Qt platform. While writing those
applications, we have gained a lot of experience that is summarized in this section.
We start from general observations related to mashup development, and proceed to
comments that are specific to mashups on mobile devices. Finally, we summarize our
experiences in developing mashups programmatically using Qt.

5.1 General Experiences and Comments

As we have already discussed earlier [13, 14], the majority of problems in web applica-
tion and mashup development can be traced back to the fact that the Web was not
originally designed to be a platform for active content and applications. The transition

 Lively Mashups for Mobile Devices 137

from static web pages towards web applications is something that has occurred rela-
tively recently, and the Web has not yet adapted fully to this transition. The problems
in areas such as usability, compatibility and security are apparent when attempting to
build web applications that run in a standard web browser.

From the viewpoint of mashup development, the two main problem areas are the
lack of well-defined interfaces and insufficient security mechanisms. These two areas
are discussed below.

Lack of well-defined interfaces. A key problem in mashup development today is the
lack of well-defined interfaces that would describe the available web services in a
standardized fashion. Although a number of web interface description languages
exist, such as the Web Services Description Language (WSDL) [16] or the Web Ap-
plication Description Language (WADL) [7], these languages are not yet in wide-
spread use.

In general, only a fraction of the data, code and other content on the Web is avail-
able in a form that would make the content safely reusable in other contexts. Most
web sites do not offer any public interface specification that would clearly state which
parts of the site and its services are intended to be used externally by third parties, and
which parts are implementation-specific and subject to change. In the absence of a
clean separation between the specification and implementation of web sites, there are
few guarantees that the reused services would remain consistent or even available in
the future. This makes mashup development error-prone and the resulting mashups
very brittle.

During the development of the mashups described in this paper, we found that only
a small number of services, such as Google Maps and Flickr, offer a well-defined API
through which these services can be used programmatically. In many cases, we had to
parse HTML pages manually to scoop up the desired data from the web page. If there
are subsequent changes in the format of the HTML page, the mashup that parses the
page may suddenly stop working properly. This happened to us a few times, e.g.,
when developing the QtComics application.

Security-related issues. Another important problem in the creation of mashware is
the absence of a fine-grained security model. The security model of the web browser
is based on the Same Origin Policy introduced by Netscape back in 1996. The phi-
losophy behind the same origin policy is simple: it is not safe to trust content loaded
from arbitrary web sites. When a document containing a script is downloaded from a
certain web site, the script is allowed to access resources only from the same web site
("origin") but not from other sites.

The same origin policy makes it difficult to build and deploy mashups or other web
applications that combine content from multiple web sites. Since the web browser (the
client) cannot easily access data from multiple origins, the mashing up of content
must generally be performed on the server. Special proxy arrangements are usually
needed on the server side to allow networking requests to be passed on to external
sites.

The security problems of the Web present themselves in many other ways. Since
there is no namespace isolation in the JavaScript engine, code and content
downloaded from different web sites can interfere with each other. For instance,
overlapping variable or function names in code downloaded from different sites will

138 F. Nyrhinen et al.

almost surely result in errors that are very difficult to detect. Vulnerabilities based on
this characteristics – collectively known as cross-site scripting (XSS) issues – have
been exploited to craft phishing attacks and other browser security exploits. The pos-
sibility of such vulnerabilities is the reason why the same origin policy restrictions
were originally introduced.

In the mashup development work described in this paper, we managed to bypass
the limitations of the same origin policy by using Qt's networking primitives which do
not adhere to the same origin policy. However, the namespace problems could not be
avoided, and in a few situations overlapping variable declarations causes us consider-
able debugging headache, in spite of the relatively advanced debugging capabilities
offered by Qt.

The key observation arising from all these problems is that there is a need for a
more fine-grained security model for web applications. Until a more fine-grained
security model and proper namespace isolation are available, mashup development is
unnecessarily tedious and unsafe.

5.2 Comments Related to Mobile Mashups

Mashup development for mobile devices is still a new area. In principle, there should
be little difference between mashups developed for mobile devices and the general
Web. Ideally, as described in the Mobile Web Best Practices document of the World
Wide Web Consortium [11], there should be just "One Web", meaning that the same
information and services should be available to users irrespective of the device they are
using.

In practice, One Web is still a dream, although we believe that over time most of
the issues will be resolved [9]. In this subsection we discuss the main issues today,
focusing on usability, connectivity and performance issues.

Usability issues. The mashups that we developed were not written only for mobile
use. Rather, we intended them to be practical on desktop computers as well. However,
since our target mobile device (Nokia N810) is stylus-operated and has a significantly
smaller, 800x480 pixel screen than a typical desktop computer, usability problems
could not be avoided. For instance, many of the Qt widgets used in our mashups are
so large that they used excessive amounts of precious screen space. Initially, some
widgets ended up being outside the viewable area. Font size differences gave us some
problems, too. Fonts that look nice on desktop computers are not necessarily readable
on the small screens of mobile devices.

Since our target device had a stylus, applications that require the precise use of a
pointing device (e.g., the QtWeatherCameras application in which the user has to
choose precise points on a map) are quite easy to use even on a small screen. How-
ever, we suspect that on other types of mobile devices, such as on conventional
“candybar” mobile phones with only a numeric keypad, the use of such applications
could be challenging.

Connectivity issues. The availability of a reliable Internet connection is vital for
mashups. In mobile devices the network connection can often be slow, unreliable or
unavailable altogether. The application developer should take this into account in the
design of the applications, and provide feedback to the user when problems do occur.

 Lively Mashups for Mobile Devices 139

In our mashup development work with Qt, sporadic connection blackouts did not
usually pose major problems. Since our mashups run mainly on the client, the applica-
tions remain active if the network connection goes down. When using the Qt network-
ing classes, the network requests will remain active until they are successfully com-
pleted, or they will timeout eventually if something goes wrong.

Performance issues. One of the main factors separating mobile devices from desktop
computers is performance. Not only are mobile devices considerably slower than their
desktop counterparts, but they usually have significantly less memory and storage
capacity as well. Although processor and memory limitations will decrease over time,
performance issues still cannot be ignored in developing mobile applications today. In
the development of the mashups described in this paper, performance differences
played a significant factor. Mashups such as QtFlickr and QtWeatherCameras require
a lot of computation, and they are very slow on our target device. The performance
problems are caused partially by the slow JavaScript engine used by Qt. In the last
year or so, several high-performance JavaScript engines such as Apple's SquirrelFish
Extreme (http://webkit.org/blog/214/) and Google's V8 (http://code.google.com/p/v8/)
were released, with performance improvements of more than an order of magnitude
over conventional JavaScript interpreters. Once such engines become widely avail-
able, application response and load times should improve considerably.

5.3 Comments Related to Qt

One of the characteristic features of our mashups and the Lively for Qt system is that
the majority of software development is performed programmatically, using imperative
development style familiar from desktop software development. This is in contrast
with traditional web technologies, which rely heavily on declarative languages such as
HTML and CSS. In this respect, our applications bear close resemblance to applica-
tions developed with Rich Internet Application (RIA) platforms such as Adobe AIR
[15] or Microsoft Silverlight [12].

Given that Qt APIs have been in development and use since the early 1990s, the Qt
APIs are on par with the best RIA systems today. For instance, the expressive power
of Qt APIs such as the QXmlStreamReader class saved us a lot of work when parsing
complex XML data. Furthermore, API documentation and the available development
and debugging tools for Qt are in good shape. In general, it was very easy to get
started with Qt.

More generally, the combination of an existing, mature application framework with
a built-in web browser and popular, fully dynamic programming language
(JavaScript) turned out to be a powerful combination. With a JavaScript engine and
only a few thousand lines of JavaScript code, it is possible to turn an existing, mostly
static, binary, desktop-era application framework into a highly interactive, dynamic
web development environment supporting mobile mashup development. Applications
require no compilation, binaries or explicit installation, and yet they can utilize the
full power of the existing, mature application framework.

On the negative side, although Qt is intended to guarantee platform-independence,
we did experience some portability issues. For instance, some widgets or fonts re-
fused to render themselves correctly on some target platforms. Apart from rendering

140 F. Nyrhinen et al.

errors, event-handling differences and some performance-related issues on mobile
devices, no other major issues were encountered, though.

The use of the JavaScript language for developing real applications is still a rela-
tively new topic. When JavaScript is used as a programming language for developing
full-fledged applications – as opposed to the conventional use of JavaScript as a
scripting language – one has to be aware of its caveats and peculiarities. These topics
have been summarized well by Crockford [3].

6 Conclusions and Future Work

In this paper we have presented an overview of the mobile web mashups that we have
implemented in JavaScript on top of Qt – a cross-platform application framework
recently acquired by Nokia. This work is part of a larger activity called Lively for Qt,
an effort that has created a highly interactive, mobile web application and mashup
development environment on top of the Qt framework. Here, we summarized our ex-
periences in developing these applications, and included some source code to illustrate
the development style.

Plenty of interesting avenues remain for future work. We are especially excited
about the possibility of building location-aware mashups that have been customized
to take into account the user's current location, utilizing the GPS satellite position
information available in modern mobile devices. With increasingly reliable and
inexpensive network connections, collaborative mashups that allow real-time collabo-
ration between multiple mobile users are also becoming a reality. In general, the use
of mashups and web applications in mobile devices offers entirely new possibilities
that are beyond the reach of web services on desktop computers. Although various
obstacles still remain, we are inspired by these possibilities and hope that this paper,
for its part, encourages people to continue the work in this exciting new area.

Acknowledgments

This research has been supported by the Academy of Finland (grant 115485).

References

1. Clarke, J., Connors, J., Bruno, E.: JavaFX: Developing Rich Internet Applications. Java
Series. Prentice Hall, Englewood Cliffs (2009)

2. Crane, D., Pascarello, E., James, D.: Ajax in Action. Manning Publications (2005)
3. Crockford, D.: JavaScript: The Good Parts. O’Reilly Media, Sebastopol (2008)
4. ECMA Standard 262: ECMAScript Language Specification, 3rd edn. (December 1999),

http://www.ecma-international.org/publications/standards/
Ecma-262.htm

5. Gibson, R., Erle, S.: Google Maps Hacks. O’Reilly Media, Sebastopol (2006)
6. Goodman, D.: Dynamic HTML: The Definitive Reference. O’Reilly Media, Sebastopol

(2006)

 Lively Mashups for Mobile Devices 141

7. Hadley, M.: Web Application Description Language Specification (November 9, 2006),
https://wadl.dev.java.net/

8. Hanson, R., Tacy, A.: GWT in Action: Easy Ajax with Google Web Toolkit. Manning
Publications (2007)

9. Mikkonen, T., Taivalsaari, A.: Creating a Mobile Web Application Platform: The Lively
Kernel Experiences. In: Proceedings of the 24th ACM Symposium on Applied Computing,
SAC 2009, Honolulu, Hawaii, March 8-12, pp. 177–184 (2009)

10. Mikkonen, T., Taivalsaari, A., Terho, M.: Lively for Qt: A Platform for Mobile Web Ap-
plications. In: The Proceedings of the Sixth ACM Mobility Conference, Mobility 2009,
Nice, France, September 2-4 (2009) (to appear)

11. Mobile Web Best Practices 1.0. World Wide Web Consortium Recommendation Docu-
ment (July 29, 2008), http://www.w3.org/TR/mobile-bp/

12. Moroney, L.: Introducing Microsoft Silverlight 2.0, 2nd edn. Microsoft Press (2008)
13. Taivalsaari, A.: Mashware: The Future of Web Applications. Sun Labs Technical Report

TR-2009-181 (February 2009)
14. Taivalsaari, A., Mikkonen, T.: Mashups and Modularity: Towards Secure and Reusable

Web Applications. In: Proceedings of First Workshop on Social Software Engineering and
Applications, SoSEA 2008, L’Aquila, Italy, September 16 (2008)

15. Tucker, D., Casario, M., De Weggheleire, K., Tretola, K.: Adobe AIR 1.5 Cookbook.
O’Reilly Media, Sebastopol (2008)

16. Web Services Description Language. World Wide Web Consortium (W3C) Specification
(March 15, 2001), http://www.w3.org/TR/wsdl

Publication V

Towards pervasive mashups in
embedded devices: Comparing
procedural and declarative

approach

A. Salminen and T. Mikkonen

c©2013 Inderscience. Reprinted with permission, from the Special Issue on
Techniques and Applications for Merging Mobile and Cloud Services,
International Journal of Communication Networks and Distributed Systems
(IJCNDS), Vol. 10, No. 3.

 Int. J. Communication Networks and Distributed Systems, Vol. X, No. Y, xxxx 1

 Copyright © 200x Inderscience Enterprises Ltd.

Towards pervasive mashups in embedded devices:
comparing procedural and declarative approach

Arto Salminen* and Tommi Mikkonen
Department of Software Systems,
Tampere University of Technology,
P.O. Box 553, FIN-33101 Tampere, Finland
Fax: +358 (0) 3-3115-2913
E-mail: arto.salminen@tut.fi
E-mail: tommi.mikkonen@tut.fi
*Corresponding author

Abstract: The web has become pervasive. This has led to a paradigm shift,
where applications live on the web as services, where they can be accessed with
different types of terminals. The ability to dynamically combine content from
numerous sources, and the ability to instantly publish services worldwide
has opened up entirely new possibilities for software development. Such
applications that aggregate content from the web are commonly referred to as
mashups. Unfortunately, for various reasons, the browser is inadequate for
hosting complex mashups, in particular when considering embedded devices
and subsystems that are not readily available in the web. In this paper, we
introduce two environments, intended for hosting context-aware mashups on
embedded devices. These environments have different approaches as one can
be used to compose mashups in procedural and another in declarative fashion.
As an example, we describe a location-aware mashup composed for both
environments.

Keywords: mobile runtime; mashup; runtime environment; embedded devices;
pervasive web; procedural approach; declarative approach; web applications;
context-aware mashups; device peripherals; location-aware.

Reference to this paper should be made as follows: Salminen, A. and
Mikkonen, T. (xxxx) ‘Towards pervasive mashups in embedded devices:
comparing procedural and declarative approach’, Int. J. Communication
Networks and Distributed Systems, Vol. X, No. Y, pp.000–000.

Biographical notes: Arto Salminen is a PhD student at Tampere University of
Technology. Currently, he holds a position as a Researcher at Tampere
University of Technology as part of a research group studying web
applications. His research interests include web applications, especially
mashups – applications that combine content from multiple sources over the
web. His most recent efforts include studying dynamic 3D web applications
and research about composing dynamic user interfaces for binary software.

Tommi Mikkonen is a Professor of Computer Science at Tampere University of
Technology, Finland, pioneered mobile software development related
education and research in Finland. Over the years, he has arranged numerous
courses on software engineering, mobile computing, embedded systems, and
operating systems. His present research interests include software engineering,
cloud computing, web programming, embedded systems, and mashup
development.

 2 A. Salminen and T. Mikkonen

1 Introduction

The web has become pervasive. This has led to a paradigm shift, where applications live
on the web as services. Moreover, the devices that can be used for accessing services can
be many, including – in addition to regular computers – many kinds of embedded
devices, such as mobile phones, game consoles, and so forth. We believe that this is only
the beginning of a new era, where the web is a ubiquitous distribution channel for data,
code and other content.

An important realisation is that applications built on top of the web do not have to
live by the same constraints that have characterised the evolution of conventional desktop
software. The ability to dynamically combine content from numerous websites and local
resources, and the ability to instantly publish services worldwide has opened up entirely
new possibilities for software development. In general, such systems are referred to as
mashups, which are content aggregates that leverage the power of the web to support
instant, worldwide sharing of content.

In this paper, which is a revised and extended version of article by Mikkonen and
Salminen (2010), we introduce two ways to compose mashups that can be specific to the
used embedded device and application. Moreover, we show that by combining data that
is available locally with information available in the web, increasingly complex
applications can be built with relative ease. The first approach used for composing such
mashups is similar to that of Nyrhinen et al. (2009), but now we use the Qt to enable
composition of mashups with the ability to use (and share) local data and device
peripherals as well. The second approach is based on novel technology called Qt Quick,
which allows declarative mashup composition on top of Qt APIs and enables
combination of native data processing and dynamic user interface.

As a practical implementation, we use a simple system where GPS data available in
mobile devices is combined with normal web data. The approach is not however
restricted to this particular case, but can be generalised for different combinations
of technologies and devices, provided that adequate communication means are
available. The basis of our implementation is Lively for Qt (http://lively.cs.tut.fi/qt), a
JavaScript-based system we have used for experimenting the use of web applications in
mobile devices.

The rest of this paper is structured as follows. In Section 2, we provide motivation for
our work in the realm of embedded systems, and introduce a number of other systems
where composing context-aware mashups is possible. Then, in Section 3 we discuss how
we have built our runtime environment. In Section 4, we introduce two sample
applications that mash up content from the web and from the physical environment of a
mobile device using its GPS sensors. Here, we give an insight to the implementation of
the applications at the level of programme code. In addition, a discussion is given how
the system could be generalised to arbitrary embedded devices or even distributed
systems, such as sensor networks. In Section 5, we provide a discussion on lessons
learned and some future possibilities, and in Section 6, we draw some final conclusions.

 Towards pervasive mashups in embedded devices 3

2 Background

In this section, we provide a discussion on our motivation, and quickly review some
pieces of existing research in the field of composing mashups with data in the internet
and local resources.

2.1 Motivation

An increasing number of embedded devices – mobile phones being the forerunners in this
field for obvious reasons – provide wireless connectivity. Indeed, it is not uncommon for
televisions, game consoles, smart home devices, and other systems to offer internet
access or accessibility from the internet.

For the most part, connectivity in the present embedded devices and systems is
commonly used for delivering upgrades to the device when, e.g., new software version
has been introduced, and for playing collaborative applications, such as multi-player
games. Moreover, one can use connectivity in a fashion where the device offers either a
web browser or a web server. The former enables one to use the device like a regular
computer, whereas the latter can be used for accessing the embedded device and its
internal data.

These two different forms of usage – binary software on the one hand, and web-
oriented, somewhat restricted infrastructure on the other hand – are by no means the only
options. Instead, offering an interface for mixing web technologies with the capabilities
of embedded devices can be used as a platform for composing complex applications that
combine the best of both worlds: performance and eye candy of traditional, installed
binary applications and pervasiveness and seemingly infinite resources of the web.

Although mashups are usually run inside a web browser, this is not an essential
requirement. In fact, when considering embedded devices and resources in external
systems, browser’s security mechanisms become a burden, since they do not allow
accessing arbitrary addresses from programme code. Furthermore, when running
mashups in embedded devices the browser may be overkill for performance. Finally,
when considering the situation in terms of technology, mashups are a fragmented mixture
of different kinds of technologies like AJAX, HTML, CSS, DOM and JSP (Paulson,
2005), with some JavaScript (Flanagan, 2006) code to enable client-side executions. This
complex combination of technologies then makes it more difficult to create maintainable
applications (Mikkonen and Taivalsaari, 2008), which in turn is a necessity for
introducing them in embedded devices.

Most of the above issues can be tackled using a special-purpose runtime environment,
as already shown by Mikkonen et al. (2009). However, in the field of combining data not
downloaded directly from the web information systems but generated by different
devices, sensors and actuators, numerous challenges remain. The scripts that on the one
hand communicate with the web should on the other hand be able to access scarce
resources in an embedded device.

From the implementation perspective, such an approach requires a liberal web
runtime environment that enables accessing the web with JavaScript, the lingua franca of
the web, and provides an access to the facilities of the device in an unrestricted fashion.
Provided with such a runtime environment, the development of mashup applications that

 4 A. Salminen and T. Mikkonen

combine content from the web with context-aware data available from the device can be
considerably simplified.

Finally, while in general only the device manufacturer has been providing
applications for embedded devices, at times it could be beneficial to allow the execution
of 3rd party applications in embedded devices. Provided with scripting facilities and
reasonable access to devices’ capabilities, new innovative application development
ecosystem may emerge. As an example, the development of games using mobile Java has
grown into a considerable global business in a relatively short amount of time.

2.2 Related work

Developing mobile, context-aware mashups has gained more attention as more advanced
tools and platforms have been provided. In this section, we briefly present some of the
research and solutions related to our work.

As stated by Maximilien (2008), the ability to access device data, especially accurate
location, is important for numerous use cases of mobile mashups. Information related to
user context, community and authentication can be collected and provided to web
services by a middleware component, as described by Koskela et al. (2007) and
López-de-Ipiña et al. (2007). Another approach is to use a modified web browser. For
example, TELAR Mashup platform utilises Mozilla browser with two extensions – the
GPS access module and the delivery context client interface module – to act as the
interface for providing location data to web pages (Brodt et al., 2008).

Mobile device manufacturers, prime examples being Nokia and Apple, have their
own platform specific solutions for writing web applications that have access to device
peripherals. Nokia’s web runtime is an extension for the Symbian web browser to enable
widgets, which in essence are small web applications that can use JavaScript APIs for
access to user and device information, for example, GPS data. Apple’s iPhone SDK can
be used to create web applications written in Objective-C. It includes UIWebView class
for implementing web browser functionality inside native applications. Furthermore, the
mobile version of the Safari browser supports W3C Geolocation API that enables client
side JavaScript applications to gain location information. While the proposed HTML5
standard includes Geolocation API – that can be used to obtain WLAN or GPS-based
location information – there still is no way to use it to access other device peripherals
such as light sensor or accelerometer. Described solutions can only be used with
proprietary devices while method to develop mashups for an arbitrary embedded device
is desired.

Number of frameworks such as Nitobi’s PhoneGap, Appcelerator’s Titanium and
RhoMobile’s Rhodes can be used to create cross-platform web applications for major
mobile operating systems. PhoneGap and Titanium are used with combination of HTML,
CSS and JavaScript and Rhodes is programmed in Ruby. These frameworks enable
access to the mobile device peripherals as well as to web resources but cannot be used
outside the mobile operating systems in arbitrary devices. All these solutions have other
restrictions too. User interface in PhoneGap and Rhodes is created as a web application
which is why they rely heavily on the web browser component of the underlying
deployment environment. As we discussed earlier, this approach can be overkill for
performance and lead to hard to maintain applications. Titanium utilises native user
interface controls, but has some platform specific APIs that reduce the cross-platform

 Towards pervasive mashups in embedded devices 5

capability of the result application. Furthermore, extending Titanium or Rhodes
application with native code is cumbersome.

3 Building a runtime environment

In combination with the Lively for Qt, we have introduced a view to composing
compelling mashups for mobile devices (Mikkonen et al., 2009). A part of the solution is
to introduce a runtime system that is capable of accessing native routines, which leads to
improved performance compared to the web browser. In addition, the system must be
flexible enough for liberating applications from restrictions of the browser. In the
following sections, we introduce the rationale we have had in our mind when developing
a runtime that satisfies the above requirements, and how it can be realised.

3.1 Towards a liberal web runtime

Originating from mobility domain, the steps needed for implementing our original vision
of the mobile web applications were originally listed in Mikkonen et al. (2009). They are
also listed in the following:

1 Take a rich graphics framework that supports a rich suite of widgets and provides
programmatic support for direct manipulation and flexible graphical transformations.

2 Take JavaScript, the world’s most widely used dynamic language, and make the
graphics APIs available to it.

3 Make it easy to access the web from the platform using asynchronous HTTP
networking and other commonly used networking standards; provide JavaScript
APIs for processing XML, JavaScript object notation (JSON), DOM and other
frequently used formats and structures.

4 Add support for device-specific JavaScript APIs for areas such as wireless
messaging, location, Bluetooth and camera support.

5 Make the platform available both inside the web browser and natively. All the
applications should be able to run both inside the web browser and as ‘phonetop’
applications that behave like native applications.

6 Add a fine-grained security model so that network-downloaded applications can be
executed safely; provide minimal access to APIs for those applications that are
downloaded from untrusted sources, and more extensive access to APIs for
applications from trusted sources.

Mikkonen et al. (2009) introduced an implementation that satisfies a number of the above
steps. The system was built on top of the Qt platform and its auxiliary facilities, but our
actual applications are composed solely with scripts.

Qt (http://qt.nokia.com) is a mature, well-documented cross-platform application
framework that has been under development since the early 1990s. Qt has been used in
various embedded devices and applications, including mobile phones, PDAs, GPS
receivers, handheld media players and automotive user interfaces.

 6 A. Salminen and T. Mikkonen

The Qt platform offers an extensive set of APIs for various purposes. To begin with,
facilities for developing a rich graphical user interface are included in the platform. Both
low-level graphics and high-level widgets are included. In addition, Qt offers APIs for
networking, including in particular Ajax-style asynchronous network accesses (Crane
et al., 2005), file access, D-Bus communication and many other useful tasks. Finally, Qt
libraries include a complete web browser based on the WebKit browser engine. The
necessary DOM and XML APIs are also included to parse, manipulate and generate new
web content.

While the vision originated from the realm of mobile devices, it can be easily
extended, since the Qt platform is commonly used in other types of embedded systems,
not just mobile devices. Consequently, potential range of gadgets that can benefit from
the implementation of the vision increases considerably. In the following, we give an
overview to our approach, followed by a discussion on how to add device specific
interfacing capabilities needed in various embedded systems.

3.2 Mashup runtimes based on Qt

There are two approaches to create dynamic applications on top of Qt C++ APIs. The
first method is creating bindings for JavaScript and constructing the application entirely
in procedural fashion. The second method is having a declarative approach to define the
application user interface and using only small snippets of JavaScript.

3.2.1 QtScript

The first approach is based on QtScript scripting engine – essentially a JavaScript virtual
machine – that has been part of the Qt framework since version 4.3. Qt APIs, which have
been originally written in C++, have been made visible to the JavaScript environment
using an additional tool called QtScriptGenerator. The tool generates a plugin component
for every Qt API, which must be loaded by the QtScript virtual machine before using the
interface. An overview of this system is given in Figure 1.

Figure 1 QtScript runtime environment

So far, we have shown that this environment is well-suited for implementing compelling
mashups that can be run in laptops and mobile devices (Nyrhinen et al., 2009). However,
the implementation still requires further work. In the context of mashup development,
mobility interfaces are far from complete, and additional interfaces to other devices are
missing. In the following, we demonstrate how such interfaces can be added. An
additional problem, which we will overlook in this paper, is the fact that the platform is

 Towards pervasive mashups in embedded devices 7

composed by simply generating bindings that give all JavaScript applications an arbitrary
access to all Qt interfaces.

3.2.2 Qt Quick

The second approach is based on Qt Quick (see Figure 2), which is a collection of
technologies that are designed for creating user interfaces on mobile phones, media
players, set-top boxes and other portable devices. It introduces a set of user interface
elements, declarative language (called QML) for describing the interface and a language
runtime. QML markup resembles combination of HTML, CSS and JSON. The user
interface is specified as a tree of QML elements acting as graphical and behavioural
building blocks that can be combined together. These elements include basic shapes and
text as well as more complex items such as a web browser component, element views and
models. Transitions between different element combinations and states can be animated.
Furthermore, QML is network transparent which allows loading a complete user interface
over the web.

The user interface can consist of multiple declarative QML modules, each defining
one Qt Quick element. These modules can be used similarly to widgets, and libraries
providing user interface components, for instance, Colibri (Qt Quick COmponent
LIBRary) and Qt Quick components, have emerged.

Figure 2 Qt Quick architecture

The application logic or libraries can be defined both in separate JavaScript files and
native binaries that have an interface for QML. This possibility utilise both JavaScript
and native code for application logic enables the programmer to flexibly use Qt C++ for
high performance and security critical parts and JavaScript for those parts where dynamic
properties are needed. Classes included in the QtDeclarative module are used to bind the
dynamic Qt Quick to static Qt APIs and QtWebKit. Similar to QtScript, mobility
interfaces are not available out of the box for the Qt Quick. However, as the Qt Quick can
be expanded with native custom components, the access to device peripherals can be
added. In this case, it is possible to restrict dynamic code accessing the APIs.

3.3 Adding device specific interfaces

In order to enrich the facilities offered for mashup development, our system can be
enhanced with additional interfaces. There are two possible ways (A and B) to
accomplish this as shown in Figure 3. The first way (A) is that an additional interface is

 8 A. Salminen and T. Mikkonen

introduced using C++, and bindings to our runtime system are either generated
automatically similarly to any other interface, or implemented manually. This however
assumes that a programme-level interface is made available, which may be an overly
optimistic assumption for numerous cases. The other way (B) is to use facilities that are
already included in the platform, and introduce additional interfaces using JavaScript.
This approach can be used if the other subsystem can be accessed with standard
interfacing mechanisms, such as sockets for instance.

Figure 3 Alternative ways for a mashup to access embedded device peripherals

To support mashup development, an embedded device manufacturer could provide the
necessary JavaScript interfaces thus making the former approach more compelling. This
way the manufacturer could also define parts of the device that are safe for being
accessed using JavaScript.

In our implementation, where we access the GPS subsystem of a mobile device, we
have followed the former approach (A) in our Qt Quick-based application and the latter
approach (B) in QtScript-based application. Since the socket interface is commonly used
in various systems, it is possible to generalise our approach with QtScript for numerous
other devices as well. The same applies for Qt Quick as it uses the native interfaces for
accessing the device APIs. For obvious reasons, application-specific parts require further
attention whenever a new interface is introduced.

• Accessing the GPS peripheral data with QtScript. The QtScript-based system was
originally designed for devices that include a GPS module, but it was later improved
to support other mechanisms for accessing GPS data as well, assuming that an IP
address to the GPS module can be provided to the application. Now we have used
the latter approach (B). At the level of implementation, we use sockets for the
communication between the JavaScript application and the GPS module. Since
sockets can either be local to the device or access an external device, which
simplifies our implementation. Inside the application, we still must parse the
information provided by the GPS module, which typically is made available in the
NMEA data format, into a format that is usable for the application.

• Accessing the GPS peripheral data with Qt Quick. Qt module called Qt Mobility
(http://doc.qt.nokia.com/qtmobility/) can be used to generate both C++ and Qt Quick
bindings to device’s peripherals. Qt Mobility includes APIs for working with mobile
devices, for example, bearer management, contacts, location, messaging, multimedia,
service frameworks and system information. Some of the Qt Mobility features, such
as video and audio support in the multimedia API, can be used on desktop as well. In

 Towards pervasive mashups in embedded devices 9

fact, portability has been an important design target for Qt Mobility, and it already
supports Maemo, Meego and Symbian targets as well as Linux, Mac OS X and
Windows.

The Qt Quick-based system is designed for touch screen Maemo, Meego and Symbian
devices where the latest Qt with support for Qt Quick and Qt Mobility is available. In this
case, we have followed the former approach, as the QML bindings for positioning are
available thanks to Qt Mobility. The communication with the GPS hardware is based on
device specific positioning APIs. The API stack used to access the GPS peripheral on
Maemo and Symbian is shown in Figure 4.

Figure 4 Qt mobility location API stacks for Maemo and Symbian platforms

4 Sample applications

As an example, we introduce next multi-user location mashup, which is a classic example
of a collaborative application that utilises location database, into which data is collected
from GPS devices, and map component that is used as the background on top of which
GPS devices are shown. The mashup can be used to present user locations and their status
messages over the map. Nicknames are used to identify different users.

The database used by the mashup is Persevere (http://www.persvr.org/), an open
source JSON database and JavaScript application server. Persevere is very convenient
when using JavaScript, as the data is always accessed through JSON HTTP/ReST calls.
In our implementation, each client updates its location in the database. Moreover, in order
to get data regarding other users, each client will also download locations of other clients.

4.1 Qt Script implementation

The QtScript-based mashup was developed as a Qt widget, similarly to the widgets
described in Mikkonen et al. (2009) and Nyrhinen et al. (2009). The user interface of the
system running in Nokia N810 Maemo environment is illustrated in Figure 5.

Since some of the mobile devices that run the application may not include a GPS
receiver, a simple fallback mechanism was introduced to ensure user positioning. At first,
the application tries to make connection to GPS hardware interface. The GPS position is
the most accurate way for this application to define the location. If the GPS interface is

 10 A. Salminen and T. Mikkonen

not available, a dialog is opened for the user to decide either to try GPS positioning again
or to attempt positioning based on IP address location. If the location service is down, or
the IP address is otherwise out of reach, the user is asked to provide his or hers location
by hand.

Figure 5 Multi user location mashup executed in Nokia N810 device (see online version
for colours)

Figure 6 Sample application implementation

The implementation (see Figure 6) we have composed is two-fold. On the one hand, we
have implemented GPS peripheral access routines using JavaScript. On the other hand,
we have composed a user interface that enables displaying the information on top of a

 Towards pervasive mashups in embedded devices 11

map downloaded from the web, which in turn provides context for the location. These
parts are implemented as JavaScript classes; the latter called QtGPS and the former
QtExplorer. In the following, these two subsystems are discussed.

4.1.1 Accessing GPS data from JavaScript

Socket connection implementation is very straightforward in our system. The Qt
framework readily includes a class called QTcpSocket for TCP socket connections,
which communicates with the GPS daemon running in the background. The state of the
mashup is maintained according to signals that class QTcpSocket emits using Qt’s
signals and slots mechanism used for managing callbacks.

Listing 1 is a code fragment where a new QTcpSocket is created and its
connections are defined and initialised.
Listing 1 Constructing a new QTcpSocket object and defining its connections

this.socket = new QTcpSocket(this);
this.socket.readyRead.connect(

 this,

 this.readSocket

);

this.socket.stateChanged.connect(

 this,

 this.stateChanged

);

this.socket.error.connect(

 this,

 this.socketError

);

When a user puts positioning into operation, the function shown in Listing 2 is
executed. At first, Qt socket is utilised to connect GPS socket. In the case of
connection timeout, fallback mechanism is initiated by a separate function
askAboutLocationSimulation. The user can then select to try connecting the
GPS daemon again, use another strategy to determine the position or decide not to use
positioning at all.

It is necessary for the application to have up to date information about GPS socket
connection state. For example, if GPS daemon crashes, accurate location information is
not available anymore and user actions may be required to start the daemon again or to
make decision about fallback mechanism.

Listing 3 shows functions that handle signals that the GPS socket connection class
may emit. Effectively, both functions only inform other parts of the programme about
problem in GPS positioning.

 12 A. Salminen and T. Mikkonen

Listing 2 Connecting to the GPS socket

/* Connect to the GPS Socket */

QtGPS.prototype.connect = function() {

 /* If a nickname is not set, ask for it */

 if(this.name == undefined) {

 this.name = this.getNickname();

 var host = new QHostAddress(this.GPS_HOST);

 this.socket.connectToHost(host, this.GPS_PORT);

 if(this.socket.waitForConnected() == false){

 this.isConnected = false;

 this.posTimer.stop();

 /* Initiate fallback mechanism */

 this.askAboutLocationSimulation();

 }

 else {

 /* Successful connection to GPS Socket */

 this.isConnected = true;

 }

 /* Start timer for user positioning */

 this.posTimer.start(this.POS_TIME);

 }

};

Listing 3 GPS socket state handling functions

/* Handle GPS Socket state changes */

QtGPS.prototype.stateChanged = function(state) {

 if(this.socket.state() ===

 QAbstractSocket.UnconnectedState) {

 this.isConnected = false;

 this.hasFix = false;

 }
};

/* Handle GPS Socket errors */
QtGPS.prototype.socketError = function(error)
{

 this.error = true;
};

 Towards pervasive mashups in embedded devices 13

GPS daemon does not write new NMEA data to the socket if it is not requested to do so.
Querying of GPS information and reading it from the socket at the level of code is
presented in Listing 4. The first function called updatePosition writes a request to
the socket if connection is up. When new NMEA data is available another function,
readSocket is executed to read and parse the data available. Finally, updated user
position information is written to Persevere database.

Listing 4 Accessing GPS information

/* Request NMEA data from the GPS Socket */

QtGPS.prototype.updatePosition = function(state)

{

 if(this.socket.state() ===

 QAbstractSocket.ConnectedState) {

 this.writeSocket(

 new QByteArray(this.NMEA_REQUEST)

);

 }

};

/* Write data to the GPS Socket */

QtGPS.prototype.writeSocket = function(data) {

 if(data && this.socket.state() ===

 QAbstractSocket.ConnectedState) {

 this.socket.write(data);

 }

};

/* Read data from GPS Socket, process it

 and upload it to the database */

QtGPS.prototype.readSocket = function() {

 var str = this.socket.readAll().toString();

 this.NMEAParser(str);

 this.updatePersevere();

};

4.1.2 Mashing up GPS data and other content

To combine user location data with other content we have implemented a class called
QtExplorer. This part of the application defines the user interface, accesses the
database and presents the most recent data on Google Maps component.

User interface of the application consists of a map component and a drop down menu
as seen in Figure 5. The map is used to visualise database contents, as it presents different

 14 A. Salminen and T. Mikkonen

users on their locations. The drop down menu, which opens when the application header
is clicked, holds items for setting user status, nickname and visibility of user location.
User can also toggle automatic position updates from the database and fit the map
viewport to show all markers.

In the constructor of the QtGPSExplorer class a new instance of QtGPS object is
created to produce position information to the database. Furthermore, a QTimer is
utilised to request data from the database in regular intervals. When new data is obtained,
it is parsed and presented over the map component. Listing 5 presents functions that
make asynchronous request to user status database and handle the response. The former
utilises Qt class QNetworkAccessManager to make a new network request and the
latter reads the response and parses it to JavaScript object that holds information about
user locations and statuses. Separate function updateMap is used to present fresh data
over the map component.

Saving user status and location to the database is done with asynchronous network
request similarly to what is shown in Listing 5. First the data to be saved is formatted into
JSON. Second the data is send to the database with a POST request. Finally, the response
from the database needs to be handled to make sure that the operation was successful.

Only data more recent than two days is displayed. A marker is placed over the map to
illustrate a user on his location. When the marker is clicked, user information shows up in
a balloon created with Google Maps API as can be seen in Figure 5.
Listing 5 Requesting new data from database

/* Request data from database */

QtExplorer.prototype.requestData = function(){

 var am = new QNetworkAccessManager(this);

 am.finished.connect(this, this.handleReply);

 am.get(

 new QNetworkRequest(new QUrl(this.URL))

);

};

/* Handle database response */

QtExplorer.prototype.handleReply = function(reply) {

 var JSONStr = reply.readAll().toString();

 var JSONObj = parse(JSONStr);

 /* Update the Google Maps component */

 this.updateMap(JSONObj);

};

As the application is divided logically in to two different parts – one that produces
information to the database and another that consumes it – it is easy to build up more
complex mashups by re-implementing the QtGPSExplorer class.

 Towards pervasive mashups in embedded devices 15

4.2 Qt Quick implementation

The Qt Quick implementation is build with Qt Mobility QML bindings. Besides Qt
Mobility, other native libraries have not been used. We have utilised JavaScript libraries
for JSON parsing and accessing the database. User interface elements are implemented
with Colibri widget library written in QML. The application executed on a desktop
environment can be seen on Figure 7.

Figure 7 Qt Quick-based GPS mashup executed on desktop environment (see online version
for colours)

The Qt Mobility 1.1 location module is included into the main QML file with import
QtMobility.location 1.1 statement. This module introduces new elements, such
as Map – a component that creates a world map that can be panned and zoomed. Listing 6
shows definition of the Map element used in our mashup. The map size is defined with
QML anchor layout to be full screen. For graphics, the map uses a separate Plugin
element, in this case the graphics are provided by Nokia. The map centre is defined with
a Coordinate element with default latitude and longitude. Finally, we attach a
function to centre and zoom level change events to make the elements representing users
be repositioned accordingly.

It was necessary to create a separate custom QML element called User to represent
different mashup users on their locations. Listing 7 shows how the User element that
marks the position of the current mashup user himself is defined. This element is not
visible until the system obtains valid position information.

We have utilised Colibri QML component library for user interface widgets such as
buttons and line edits. For example, Listing 8 shows how the button intended for
simulating the GPS data is created. The button position related to other elements is
defined with anchor based layout. Appearance of the button can be changed by editing
different parameters, such as color, gradientDefaultOn and textColor. We
have attached an inline function to handle button clicks. The function sets the

 16 A. Salminen and T. Mikkonen

PositionSource element called myPositionSource to obtain data from an
external file and activates it.
Listing 6 Definition of the Map element

Map {

 id: map;

 size.width: parent.width;

 size.height: parent.height;

 anchors.fill: parent;

 plugin : Plugin {

 name : "nokia";

 }

 zoomLevel: 7;

 mapType: Map.SatelliteMapDay;

 center: Coordinate {

 latitude: defaultLatitude;

 longitude: defaultLongitude;

 }

 onCenterChanged: {

 setUsersOnMap();

 }

 onZoomLevelChanged: {

 setUsersOnMap();

 }

}

Listing 7 Definition of the user element that represents the mashup user

User{

 id: myself;

 icon: "./qml/star.png";

 status: myStatus;

 name: myName;

 lat: myLat;

 lng: myLng;

 visible: false;

}

Listing 8 Button created with QML element library called Colibri

CLButton {

 id: simulateButton;

 anchors.left: statusLineEdit.right;

 Towards pervasive mashups in embedded devices 17

 anchors.leftMargin: 10;

 anchors.top: statusLineEdit.top;

 color: "darkgrey";

 gradientDefaultOn: true;

 textColor: "lightgrey";

 text: "Simulate GPS";

 onClicked: {

 myPositionSource.nmeaSource = "qml/nmealog.txt";

 myPositionSource.start();

 }

}

4.2.1 Accessing GPS data from QML
Qt Mobility’s location module includes elements such as PositionSource,
Coordinate and Place that make composition of a location aware mashup effortless.
The GPS positioning is enabled with PositionSource element that gains the position
information from device peripheral. This element allows using a separate file containing
raw NMEA data for testing if real GPS data is not available. Listing 9 shows definition of
the PositionSource element used in the main QML file. The element is activated
when the application starts and it attempts to obtain the position information in every
10,000 milliseconds. We have attached an inline JavaScript function to the position
change event of the PositionSource. In this function, we check if the position
information is valid, and the user of the application can be shown on the map. Whenever
a valid position data is acquired, the data is saved to the database with savePosition
function.
Listing 9 Definition of the PositionSource element

PositionSource {

 id: myPositionSource;

 active: true;

 updateInterval: 10000;

 onPositionChanged: {

 if(

 !myPositionSource.position.longitudeValid ||

 !myPositionSource.position.latitudeValid

) {

 myself.visible = false;

 tracking = false;

 return;

 }

 tracking = true;

 map.center = myPositionSource.position.coordinate;

 18 A. Salminen and T. Mikkonen

 myLat = myPositionSource.position.coordinate.latitude;

 myLng = myPositionSource.position.coordinate.longitude;

 var point = map.toScreenPosition(

 myPositionSource.position.coordinate

);

 myself.visible = true;

 savePosition();

 }

}

4.2.2 Mashing up GPS data and other content

Accessing resources over the internet is straightforward with Qt Quick. The network
transparency enables to use URLs to locate resource files – images or fonts, for instance.
The Qt Quick supports the XMLHttpRequest object, which can be used to
asynchronously obtain data over the network. The XMLHttpRequest follows the same
W3C standard as many popular web browsers with few exceptions. It does not enforce
the same origin policy nor support synchronous requests.
Listing 10 Obtaining data from Persevere database with XMLHttpRequest

function getPersevereData(url, callback) {

 var doc = new XMLHttpRequest();

 doc.onreadystatechange = function() {

 if (doc.readyState == XMLHttpRequest.DONE) {

 if(doc.status == 404) {

 console.log("Sorry, error 404!")

 }

 else if(doc.status >= 200 && doc.status < 300) {

 callback(doc);

 }

 }

 }

 doc.open("GET", url);

 doc.send();

}

In order to make accessing our Persevere database effortless, we have created a small
library in a separate JavaScript file, which is included in the QML project with import
“./qml/persevere.js” as DB statement. This library consists of two functions –
one for saving data and another for requesting it. Listing 10 shows the latter,
getPersevereData function, which can be used to obtain data from the database. We
use the XMLHttpRequest object to send a GET request to the server, and then attach an
inline function to handle the state changes of the request. When the request state is

 Towards pervasive mashups in embedded devices 19

DONE, the callback function provided is executed, if the request was successful. The
Listing 11 demonstrates how the library is used from the main QML file. QML Timer
element is used to call the function updateLocalUserData in every 20,000
milliseconds to keep the mashup data up to date.
Listing 11 Using JavaScript library for database access in regular intervals

Timer {

 running: true;

 interval: 20000;

 repeat: true;

 onTriggered: {

 updateLocalUserData();

 }

}

5 Results and discussion

In this paper, we introduced two mashup runtime environments intended for embedded
devices. These environments have different perspective – one with procedural and
another with declarative approach for mashup composing. Both environments can be
used to access arbitrary device peripherals as well as resources over the internet with a
liberal security model.

Compared with existing solutions described in Section 2.2, environments presented in
this paper can be used to access arbitrary device peripherals in different types of
embedded devices. The existing solutions are restricted to proprietary devices.
Furthermore, while a modified browser as a mashup platform might be overkill for
performance, environments described here consume fewer resources. In addition, both Qt
Script and Qt Quick-based environments are based on Qt application framework that is
available for numerous existing operating systems on desktop and on embedded devices.
Therefore, the mashup already programmed and tested for one platform can be used on
another relatively easily.

When the two mashup runtime environments, Qt Quick and QtScript, are compared,
it is clear that with the former a mashup composer can work on much higher level than
with the latter. If necessary native libraries and interfaces for accessing device peripherals
are readily provided, the programmer can focus on combining the data and polishing the
visual appearance of the mashup. However, if the target device manufacturer, or some
third party, does not provide the necessary interfaces, much more skill is needed when the
peripherals are accessed with native code and bindings for Qt Quick are created.
Especially data exchange between the dynamic Qt Quick and static Qt C++ can be
difficult to implement. Therefore, using the QtScript-based approach might be more
convenient for some programmers, as the whole mashup can be build dynamically,
including the peripheral accessing.

While in principle JavaScript could be replaced with other scripting languages in our
implementation, its use has special advantages. In particular, a number of web services
offer a JavaScript API that can be accessed in a natural fashion. Luckily, despite its

 20 A. Salminen and T. Mikkonen

reputation as a language that is not well-suited for serious applications, JavaScript is
actually a nice language when overlooking parts that are directly associated with the
browser, such as the I/O model which can agreeably be regarded as degenerated
(Crockford, 2008; Mikkonen and Taivalsaari, 2007).

Although the application example provided in this paper is simple, it generalises to
more complex cases as well. However, depending on the implementation environment,
different facilities could be used. For example, in certain embedded systems, the D-Bus
system (http://dbus.freedesktop.org/) would most likely be a better option than a socket,
since more advanced services could be offered in a simpler fashion. This however would
require generating additional plugin interfaces for the underlying JavaScript environment
either manually or automatically. Based on some practical experiments, neither of the
options seems to be overly difficult to implement in practice.

Different ways to deliver data from one device to another provides further research
issues. While it is in principle possible to include a web server in numerous devices, the
smallest sensor-based systems will most likely require a lower-level interface. Moreover,
issues associated with connectivity must also be taken into account, since some
configurations can be based on near-field communication. Sharing information
originating from different sources for collaborative applications in turn requires
collaborative means in the form of a web server or peer-to-peer architecture established
between some of the devices. In such a network, bearers other than WLAN, such as
Bluetooth, could be used as well.

Finally, while the use of a separate runtime environment has provided us additional
flexibility for accessing external resources, the approach raises obvious concerns
regarding security. In our case, we believe that extensive work performed earlier in other
contexts – such as Mobile Java, where numerous interfaces have been specified (Riggs
et al., 2003) – can be applied. However, since we are aiming at developing real
applications, the usual single-origin security model is not adequate unless individual
devices provide their own code as well.

6 Conclusions

In this paper, we have described a fashion to liberally and flexibly combine content that is
downloaded from the web and data available in embedded devices. As the method of
implementation, we used JavaScript, the lingua franca of the web, for which an
interpreter is available in all web browsers as well as in numerous other systems, such as
the Qt framework that we used as the vehicle of implementation. While only a simple
implementation was presented, we believe that with adequate connectivity the system can
be generalised to a number of different configurations, where devices, sensors and
arbitrary actuators provide application-specific data.

Our approach is based on using a separate runtime. We do not consider this as an
essential restriction, since if needed the same (or similar) runtime could be included
inside a browser as a plugin, thus enabling data access from within the browser.
Furthermore, the underlying application framework, Qt, is already in use in numerous
embedded devices. Therefore, by enabling scripting access to local resources, the
embedded devices would be in reach for truly pervasive mashups.

 Towards pervasive mashups in embedded devices 21

References
Brodt, A., Daniela, N., Sailesh, S. and Bernhard, M. (2008) ‘Context-aware mashups for mobile

devices’, Proc. 9th Int. Conf. on Web Information Systems Engineering, Auckland,
New Zealand, pp.280–291.

Crane, D., Pascarello, E. and James, D. (2005) Ajax in Action, Manning Publications Co.,
Greenwich, CT, USA.

Crockford, D. (2008) JavaScript: The Good Parts, O’Reilly Media, CA, USA, ISBN: 978-0-596-
51774-8, ISBN 10: 0-596-51774-2.

Flanagan, D. (2006) JavaScript: The Definitive Guide, 5th ed., O’Reilly Media, CA, USA,
ISBN 978-0-596-10199-2, ISBN 10: 0-596-10199-6.

Koskela, T., Kostamo, N., Kassinen, O., Ohtonen, J. and Ylianttila, M. (2007) ‘Towards
context-aware mobile Web 2.0 service architecture’, Proc. Int. Conf. on Mobile Ubiquitous
Computing, Systems, Services and Technologies, IEEE Computer Society, pp.41–48.

López-de-Ipiña, D., Vazquez, J.I. and Abaitua, J. (2007) ‘A Web 2.0 platform to enable
context-aware mobile mash-ups’, Proc. European Conf. on Ambient Intelligence, Darmstadt,
Germany, 7–10 November, pp.266–286.

Maximilien, E.M. (2008) ‘Mobile mashups: thoughts, directions, and challenges’, IEEE Int. Conf.
on Semantic Computing, pp.597–600.

Mikkonen, T. and Salminen, A. (2010) ‘Towards pervasive mashups in embedded devices’, Proc.
of the 16th IEEE Int. Conf. on Embedded and Real-Time Computing Systems and
Applications, IEEE Computer Society, pp.35–42.

Mikkonen, T. and Taivalsaari, A. (2007) ‘Using JavaScript as a real programming language’, Tech.
Rep. TR-2007-168, Sun Microsystems Laboratories.

Mikkonen, T. and Taivalsaari, A. (2008) ‘Web applications – spaghetti code for the 21st century’,
Proc. of the 6th ACIS Int. Conf. on Software Engineering Research, Management and
Applications, IEEE Computer Society, pp.319–328.

Mikkonen, T., Taivalsaari, A. and Terho, M. (2009) ‘Lively for Qt: a platform for mobile web
applications’, Proc. Sixth ACM Mobility Conf., Nice, France, 2–4 September, pp.1–8.

Nyrhinen, F., Salminen, A., Mikkonen, T. and Taivalsaari, A. (2009) ‘Lively mashups for mobile
devices’, Proc. of the First Int. Conf. on Mobile Computing, Applications and Services,
San Diego, CA, 26–29 October.

Paulson, L.D. (2005) ‘Building rich web applications with Ajax’, Computer, Vol. 38, No. 10,
pp.14–17.

Riggs, R., Taivalsaari, A., Van Peursem, J., Huopaniemi, J., Patel, M. and Uotila, A. (2003)
‘Programming wireless devices with the Java™ 2 platform, Micro Edition’, 2nd ed.,
Addison-Wesley Java Series, Pearson Education, New Jersey, USA, ISBN-10: 0201746271,
ISBN-13: 978-0201746273.

Publication VI

Developing client-side mashups:
Experiences, guidelines and

reference architecture

A. Salminen, F. Nyrhinen,

T. Mikkonen and A. Taivalsaari

Editors: Artur Lugmayr, Olli Sotamaa, Heljä Franssila,

and Hannu Kärkkäinen

c©2013 IGI. Reprinted with permission, from the Special issue on Ambient
and Social Media Business and Application, International Journal of
Ambient Computing and Intelligence (IJACI), Vol. 5, No. 1.

Developing Client-Side Mashups:
Experiences, Guidelines and Reference Architecture

Arto Salminen
Tampere University of Technology

Tommi Mikkonen
Tampere University of Technology

Feetu Nyrhinen
Institut für angewandte Systemtechnik Bremen GmbH

Antero Taivalsaari
Nokia Research Center

Abstract
Software mashups that combine content from multiple web sites to an integrated experience are a popular trend.
However, methods, tools and architectures for creating mashups are still rather undeveloped, and there is little
engineering support behind them. In this paper we present guidelines that can serve as a helpful starting point for the
design of new mashups. Guidelines focus mainly on mashup creation methods. Furthermore, we describe a reference
architecture for client-side mashup development. In addition, we provide insight into mashup development based on
our practical experiences in implementing various sample client-side mashup applications and tools for creating
them. The long term goal of our work is to facilitate the development of compelling, robust and maintainable
mashup applications, and more generally ease the transition towards web-based software development.

Keywords: Web applications, mashups, mashup development, web-based software development, web
engineering.

1. Introduction
Software mashups that combine content from multiple web sites are a hot trend. It is becoming increasingly

common to find compelling web applications that aggregate and deliver images, text, and other data from numerous
web sites in an innovative and often entirely unforeseen fashion. The ability to combine code and content from
multiple sources from anywhere in the world has opened up entirely new possibilities for software development. The

DEVELOPING CLIENT-SIDE MASHUPS 2

trend towards software mashups has given rise to a number of environments and tools that have the specific
objective to make mashup development easier. However, due to the relatively ad hoc nature of mashups, it has been
– and still is – difficult to provide developers with general purpose tools for mashup development. Furthermore,
there are various restrictions and technical limitations that arise from the design of the web browser, such as the
same-origin principle (Rudeman, 2010) that prevents a web client from easily downloading data from multiple web
sites. Common file formats such as XML and JSON (JavaScript Object Notation), techniques such as RESTful web
services (Fielding & Taylor, 2002), and JavaScript libraries such as Dojo (http://www.dojotoolkit.org/), jQuery
(http://jquery.com/) and Scriptaculous (http://script.aculo.us/) have turned out to be invaluable in mashup
development, though.

Both server-side and client-side mashups can be implemented. Today, most mashup development tools (see
a summary of the tools in Nyrhinen, Salminen, Mikkonen & Taivalsaari (2009) and Taivalsaari (2009)) are intended
for server-side use, that is, the downloading, processing and generation of web content is performed on the server. In
client-side mashups, in contrast, the downloading and combination of web content is performed on the client (e.g., in
a web browser running on a desktop computer), typically utilizing the JavaScript language (Flanagan, 2006;
Crockford, 2008) and additional libraries to implement the application.

In this paper we examine technical development of client-side mashups and the characteristics of client-
side mashups in general. Based on our hands-on experiences in developing various client-side mashups and tools,
we provide a novel set of guidelines that can help a developer choose the right methods when building new
mashups. Even though mashup patterns for enterprise server-side mashups have been described (Ogrinz, 2009), this
kind of a set of practical methods for creating client-side mashups has not been available earlier. Furthermore, in
order to enable different vendors to provide service interfaces and to compose mashup clients, we describe a
reference architecture for client-side mashups. In summary, the goal of the paper is to give an extended overview of
our experiences on client-side mashup development. This paper is an extended version of our earlier papers
(Salminen, Nyrhinen, Mikkonen & Taivalsaari, 2010; Mikkonen & Salminen, 2011).

The paper is structured as follows. Section 2 discusses mashups and mashup development in general. In
Section 3, we group our findings into practical guidelines that can be applied to the development of new mashups. In
Section 4, we describe our mashup reference architecture. In Section 5, we provide hands-on mashup development
examples based on real-life applications that we have created. In Section, 6 we discuss the experiences and lessons
learned during the implementation of these applications. In Section 7, we draw some conclusions and discuss the
directions for future work, including the steps that pave the way towards mashware (Taivalsaari, 2009) – full-
fledged mashup applications that consist of software components that have been downloaded from multiple sites and
then dynamically combined into new applications.

2. Background and Related Work
A typical software mashup combines data, images, code, and other content from multiple sources into a

new user experience. In today’s mashups, data and content are downloaded most commonly from different web
sites, but in principle data from any source (such as the user’s local computer or an intranet database) can be used. In
addition to aggregating data from multiple sources, mashup applications typically provide an alternative user
interface or add advanced filtering or visualization capabilities to a web service.

An important distinction exists between portals and mashups. Portals are web pages that contain
information that is retrieved from different sources. Usually the user interface of a portal consists of numerous
“portlets”, separate pieces of content that are presented in unified way. However, in contrast to mashups these
portlets are isolated from each other, and cannot communicate with each other. Mashups are more integrated
applications that are constructed in such a fashion that the user typically cannot distinguish data origins.
Furthermore, mashups usually create entirely new visualizations from the information they are based on instead of
just aggregating the information into a single view.

For historical reasons, the majority of mashups are generated on the web server. Since numerous
restrictions exist for composing mashups inside the web browser (on the client), the tools that have been introduced
for mashup development are often server-based. Most of these tools include a hosting service that is also located on
the web server. The server-side approach allows the developer to circumvent certain typical, recurring limitations,
such as cross-domain AJAX requests that are not permitted in an off-the-shelf browser because of security issues.
There is a W3C working draft document Cross-Origin Resource Sharing (van Kesteren, 2010) that provides
guidelines on how the cross-domain issues could be possibly solved in the future.

DEVELOPING CLIENT-SIDE MASHUPS 3

Despite the ever-increasing role of the web browser as target platform for mashups and software
applications more generally, the web browser is not an essential requirement for mashup development. On the
contrary, there are technologies that utilize custom-built, special-purpose web runtimes or native clients that can
bypass the above mentioned limitations and can offer better performance, e.g., by performing the client-side mashup
generation using native processing capabilities. For instance, mashups intended for mobile devices often utilize a
custom-built client environment. Differences between these two types of mashups, i.e. client- and server-side
mashups, are presented in Table 1.

Table 1. Differences between server-side and client-side mashups.

Server-side mashups Client-side mashups

Processing takes place on a server. Processing takes place on a client.

Resources can be scaled up. Resources are limited.

Amount of network traffic high. Amount of network traffic is usually low.

No offline functionality. Offline functionality possible.

No same origin policy issues. Same origin policy is an issue if the runtime
environment is a web browser.

When the application is updated, no user
interaction is required.

Updating may require user interaction.

Software mashup development has gained a lot of research interest recently, and different patterns and
trends can be identified. For example, Wong & Hong (2008) have categorized mashups into five different groups:
aggregation, alternate UI & in-situ use, personalization, and focused view of data and real time monitoring.
Furthermore, Lee, Tang, Tsai & Chen (2008) present seven mashup patterns: data source, process, consumer,
enterprise, client-side, server-side and developer assembly mashups. In addition, a number of challenges related to
mashup development have been pointed out. As stated by Zang, Rosson & Nasser (2008), mashup developers
encounter problems mainly in three areas: API functionality, documentation and coding details. Issues related to API
functionality in their research were, for example, authentication and performance problems. Some developers were
concerned about the lack of proper documentation, i.e., API reference, tutorials and examples. The programming
skills needed for creating compelling mashups in JavaScript were also identified as hard to learn. Mashup
architectures for enterprise use have been studied before by López, Bellas, Pan & Monoto (2008; 2009). Their work
describes a server-side mashup tool that defines four-layer architecture for mashups. This tool can be used to create
mashup in declarative fashion.

Mashup development can be facilitated considerably with purpose-built tools. We have provided a detailed
summary of available mashup development tools in an earlier paper (Taivalsaari, 2009) (see also Nestler (2008) and
Yu, Benatallah, Casati & Daniel (2008)). Examples of mashup development tools include Dapper
(http://www.dapper.net/open/) and IBM Mashup Center (http://www-01.ibm.com/software/info/mashup-center/) –
IBM’s enterprise mashup platform. As it is typical in the domain of mashup development, the pace of development
is rapid and many tools have been released and then later discontinued – sometimes after only a relatively short time
frame. Examples of discontinued tools include Microsoft Popfly and Google Mashup Editor.

DEVELOPING CLIENT-SIDE MASHUPS 4

3. Guidelines for Successful Mashup Development
Based on our experiences and observations we will next provide guidelines for successful mashup

development. The guidelines are divided into a number of areas, starting from technical issues in mashup design and
issues related to interfacing with existing web services, ranging to broader issues such as standardization and
legislation.

3.1 Mashup Design
Design applications according to software engineering principles. When designing mashups, adhere to

established software engineering principles. Whenever possible, separate the user interface, the business logic and
the data from each other. Later we describe our mashup reference architecture that can be used as a starting point.
Utilize JavaScript libraries that enhance cross-platform compatibility by taking into account the differences between
web browsers. If a mashup is based on JavaScript and Ajax, choose a suitable library that has a good support for
JSON, JSONP (Özses & Ergül, 2009) and XML parsing if necessary. Evaluate the services that you want to utilize
thoroughly. Create a plan for the implementation and follow the plan.

Design for diversity. There are numerous web browsers and web-enabled devices in use today, and new
types of devices are introduced regularly. These target environments are not homogeneous but may differ
considerably from each other, especially if the mashup is intended to be used in mobile devices as well. Generally
speaking, it is advisable to design for the lowest common denominator. Keep in mind the traditional limitations of
mobile devices. For example, input methods that are common in desktop computers – such as onmouseover events
or right-clicking – might not be available or usable on a mobile device. Battery consumption, screen size and issues
caused by limited network bandwidth or intermittent connections must be kept in mind. If your mashup application
runs in a web browser, it is possible to detect the presence of mobile browsers and provide a mobile-optimized
version of the application.

One size does not fit all. Although it would be nice to develop only a single solution for all target
platforms, in most cases the platform for which a mashup is intended cannot be neglected. Mobile, desktop and
server mashups usually require a different approach. The essential question is how the differences should be taken
into account. If the majority of computation is performed on the server, even those client devices that have limited
resources and capabilities may be able to run the mashup. Nevertheless, be prepared to write several versions of
your mashup if you intend to reach from desktop environments all the way to mobile devices with limited screens
and resources.

Pay special attention to security. Web security is based on a number of relatively simple principles, such
as the use of SSL/TLS and the same origin policy (Rudeman, 2010). Bypassing the browser security mechanisms is
not recommended. Although mashups commonly obtain data from multiple domains, the downloading should be
performed in such a way that executable code can only arrive from a single domain. For example, the use of JSONP
(JSON with Padding) is a security hazard, since the use of <script> tags exposes the application to cross-site
scripting attacks. It is therefore important to choose services accessed with JSONP carefully. In addition, it is
recommended to use the native JSON parsing in the browser or use a well-established JavaScript library, instead of
“parsing” JSON with the fundamentally unsafe eval() method (see Crockford (2008)). As a general principle, third-
party code should never be eval’d without sanitization before execution.

Test carefully. Test your mashup carefully. Run tests also with a low bandwidth connection and in the
offline mode. Use tools and libraries that make testing easier. It is recommended to choose a suitable JavaScript
library with unit testing capabilities and to utilize debugging tools such as the Firebug add-in for the Firefox
browser. Do testing with different browsers and browser versions, since there are still considerable differences
between browsers, especially with those browsers that are available on mobile devices. Furthermore, remember to
provide useful feedback to the user about the state of the application. This is the first general principle mentioned in
ten usability heuristics originally developed by Molich & Nielsen (1990) and later refined by Nielsen (1994). If your
mashup is intended to be used as a building block for further mashups, separate the developer and end-user
messages clearly. A debugging message popping up is invaluable for a developer, but it can drive an end-user away.

Consider using quality evaluation frameworks. Cappiello, Daniella & Matera (2009) have studied the
mashup components from the quality point of view. Their evaluation criteria contain various categories such as the
software API, the data provided by a component, the documentation, and the user interface. In addition to more

DEVELOPING CLIENT-SIDE MASHUPS 5

tangible quality measures, one cannot overlook the stability aspect either, since the used components should be
available in the future as well to ensure the functionality of the application.

Be visually impressive & keep usability in mind. Combine data and other content in an innovative,
visually impressive way. Use innovative data visualization techniques to help the user to handle complex
information. Most users “see only what they see” and their perception of quality is based almost completely on the
look-and-feel of a system. Therefore, user interface issues are really important. Edward Tufte’s books on data
visualization (e.g., (Tufte, 1983)) can serve as a helpful starting point. We have covered usability issues related to
mashup development in other papers (see e.g. Nyrhinen et al. (2009)); we intentionally exclude the more detailed
treatment of that subject from of this paper.

3.2 Interfacing with Web Services
Build on solid ground. Prefer established, well-documented web services and APIs that are of high quality

as well as stability in order to guarantee that the required web services or components will be available also in the
future. The probability that the service will exist in the future is higher when using APIs and services from
established companies. The stability of the interfaces should not be underestimated, since even established services
are typically changed over time. Consider using open databases and wikis as sources for your mashups, since this
will decrease the dependence on a single vendor. However, the use of community-provided data and services has
possible drawbacks as well, since such services tend to be more likely to change or be temporarily unavailable.

Adapt new technologies carefully. If you are planning to make use of experimental technology, bear in
mind that the interfaces, support in browsers and other details are likely to change unnoticed. Furthermore, new
technologies are not available for all users. If reasonable, consider providing an alternative version of the mashup
with the same functionality implemented with established technologies. Documentation of new frameworks and
interfaces may be nonexistent or obsolete. Examples or tutorials can be missing. These factors can slow down
development and make it more difficult. Moreover, experimental technology may cease to exist and you need to find
another way to create the mashup.

Anticipate changes. Do not expect services and their interfaces and data formats to remain the same over
time. Avoid binding your application too tightly to a specific service or a data format. Avoid “scraping” data directly
from an HTML page, since data read in such a format will almost surely become unusable or unavailable sooner or
later. Well-designed abstraction and adaptation layers make it easier to switch to another service when needed.
Whenever possible, write code that is loosely coupled with foreign components/data, especially when utilizing
unreliable and frequently changing web resources.

Send notification and provide a fallback solution upon service breakdown. Construct mechanisms that
notify you (the developer) automatically if your application breaks down. Implement fallback mechanisms, e.g., by
automatically connecting to an alternative web service, to ensure the functionality of your application is preserved
even while some of the required services are unavailable. The use of JavaScript error handling constructs such as
try...catch statements is strongly encouraged, since mashup applications are far more likely to suffer from
unexpected errors than traditional applications are.

3.3 Broader Considerations
Follow standards and recommendations. When using content or data from other websites and services,

rely primarily on established services with well-documented APIs that provide content using open standards and
commonly used formats, such as RSS, XML, JSON and so forth. Data that is available in a standardized format is
much more likely to remain available in the same format in the future, whereas service-specific formats are much
more likely to change. In addition, follow the recommended JavaScript programming guidelines and practices
(Crockford, 2008) to improve the quality, security and performance of your application.

Pay attention to legal matters. Legal and intellectual property issues have to be considered carefully
before using any external web service or API. Different vendors have very different views on mashups. Some
vendors encourage their services to be used in as many places as possible, while some vendors strictly forbid the use
of their services in other contexts. HTML “screen scraping” – that is, harvesting data directly from web pages by
imitating a user accessing the site – is troublesome from the legal point of view. Remember that some of the content
available in web services may be coming from third parties, and their (copy)rights must be honored as well. For
example, the Flickr API can be used to access content even with “all rights reserved” notices, and the mashup

DEVELOPING CLIENT-SIDE MASHUPS 6

developer must comply with the photo owners’ restrictions as defined in Flickr API Terms of Service
(http://www.flickr.com/services/api/tos/).

4. Reference Architecture for Client-Side Mashups
While the development of mashups has sometimes been considered mostly an ad hoc activity – see for

instance (Harmann, Doorley & Klemmer, 2008) – there are commonalities in the goals of different mashup systems.
To begin with, all these projects build on top of parallel activities and the innovativeness of a large group of
independent service providers. Moreover, they aim at providing superior user experience without overlooking other
important quality attributes of the system such as security, performance, availability and malleability. Furthermore,
since mashups are generally built using the available means for combining components, mashup projects can build
upon other mashups. However, little attention has been paid to the architectural choices that have been made in
mashup projects, and the creators of these projects have often come to their solutions intuitively or via trial and
error. Hence there is little guidance available for the creators of new mashups regarding the architectural structuring
of these systems.

In this section, we describe a reference architecture structure for client-side mashup development (Figure
1). As is common with reference architectures – generic structures that define terminology and functions of a system
in a certain field of problems – a practical implementation of such a reference architecture may consist of a subset of
the components presented here – some of the components may be merged or omitted totally if they play no role in
the application that is being constructed.

Figure 1. Reference architecture for client-side mashups

4.1 Reference Architecture Components
Renderer. Since mashups are generally used for visualizing available data, a user interface layer is needed.

Because visualization commonly requires graphical elements, most mashup systems rely on an existing set of
widgets that usually also support interaction with the user. Numerous widget libraries are available. The use of a
certain set of widgets typically has a major effect on the look and feel of the application. Note that widget libraries
tend to utilize very different binding techniques to connect user interface elements and data, placing a significant
impact on the overall design of the application. In some cases, depending on the capabilities offered by the widget
library, it may be necessary to merge mashup creation operations with the user interface components. However, in
the general case, these functions are distinct: the user interface is responsible for rendering the data produced by the
mashup function and for interacting with the user in general, whereas the underlying mashup functionality performs
the actual combination of data that creates the data to be rendered.

Mashup creation. The requirements for combining data tend to vary significantly between different types
of mashups. Many applications compose content in different layers, placing for example graphical shapes on top of a
map offered by one of the content providers. Some other systems apply pipes-and-filters architectural pattern in

DEVELOPING CLIENT-SIDE MASHUPS 7

which content is processed in different way. As a general principle, mashup creation should occur independently of
user interface aspects. However, in practice user interface aspects such as layering will have a significant impact on
mashup creation.

Mashup manager. To overcome the fragile nature of mashups and to account for potential changes in the
source material used for mashups, a mashup system should have a mashup manager component. This component
ensures that mashup content is available and has the ability to adapt to changes that may occur for instance, when
mashup content providers change their interfaces. For example, the mashup manager may decide to use a backup
service when the primary service is not available. Similarly, the mashup manager is responsible for defining whether
the system should run in online or offline mode; the component may maintain local storage to support offline use of
the service. The mashup manager is responsible for security, as well as selecting the renders, formatters and
extractors that are used for a particular client device.

Content formatter and extractor. Content formatter and extractor together compose the mashup data
model, i.e., the intermediate representation that is used for generating the visual representation of the mashup. The
data model maintains the internal data that is used by the application for various purposes. The data model includes
data accessors and extractors that download data from different sources (e.g., the Web, the local file system or
device peripherals), as well as data formatters that manipulate the data provided by the extractors into an
intermediate representation that is easier to work with. Internally, content formatters and extractors can be layered,
with different layers being responsible for different tasks, such as low-level interfacing, data scraping, formatting
changes, and so forth.

Content providers. In order to extract content, there need to be interfacing capabilities to the content
providers, be it data on the Web, local data residing in the device itself, or something that is generated on the fly
based on, e.g., location (GPS) data. While not a part of the reference architecture per se, these features are an
integral part of any mashup system, be it a system that is building on top of an already existing web service or
simply something that is readily available in the device itself.

Our architecture can be compared with two other popular web application architectures: three-tier and
Model-View-Controller (MVC) architecture. Three-tier architecture is a server-client architecture in which
presentation, application logic and data are separated into independent modules (Eckerson, 1995). As the
presentation module never interacts directly with the data, three-tier architecture is conceptually linear (see Figure
2). MVC architecture originates from the Smalltalk system (Reenskaug, 1979a; 1979b), and it was originally
designed to facilitate the creation of graphical user interfaces (Krasner & Pope, 1988). The MVC architecture
consists of three components: a Model that stores and manages data, a View that renders the user interface and a
Controller that defines how the user interface reacts to user input. In contrast to three-tier architecture, MVC
architecture is triangular as presented in Figure 2.

Figure 2. Three-tier architecture (left) and MVC architecture (right)

Our mashup reference architecture resembles the three-tier architecture model. It is linear in a sense that the
renderer (presentation) always interacts with the content formatter and extractor (data) through the mashup creation
module (application logic). However, as we mentioned earlier, in some cases it is necessary to merge the mashup
creation operations with the user interface aspects. Therefore, some implementations may resemble the MVC model.
In that case the renderer (view) interacts with the mashup creation module (controller), and instead of the mashup
creation module handling the result from the content formatter and extractor (model), the result is passed directly to
the renderer. In these kinds of mashups it is typical that the user interface widgets show only one type of content.

Next, we introduce a number of sample systems and applications upon which the reference architecture
above is based.

DEVELOPING CLIENT-SIDE MASHUPS 8

5. Sample Client-Side Mashups
In this section we present three hands-on examples of mashups that we have developed. The mashups are

built on set of popular web service APIs to demonstrate different techniques and options that can be used in client-
side mashup development. Even though our examples are developed as client-side mashups, some parts of the
functionality reside on the server-side. For instance, mashups using Google Maps rely on Google’s servers that
provide the map tiles as part of the graphical user interface. Note that many of these mashups have been created for
use in mobile devices. We have described the special aspects related to mashup development for mobile devices in
another paper (Nyrhinen et al., 2009).

Since JavaScript is the only programming language that is readily available inside all commercial web
browsers, the JavaScript language has become the dominant development language for mashups that require client-
side processing. All the mashup examples shown in this section have been written in JavaScript. In general, the
mashups that we built have been implemented using typical Web 2.0 technologies such as Ajax, XHTML and
JavaScript. For those applications that are intended for mobile devices, we have used Lively for Qt
(http://lively.cs.tut.fi/qt) – a custom mobile runtime environment that makes the Qt APIs (http://qt.nokia.com/)
accessible from JavaScript code – as well as Qt Quick, which is a declarative technology for creating mobile
applications. Qt is a popular cross-platform application and UI development framework. The Qt APIs can
considerably simplify the development of compelling mashups especially for Nokia devices.

5.1 Twitter Image Mashup
Our first example, the Twitter Image Mashup (Figure 3) combines Twitter (http://twitter.com) entries

(“tweets”) with images from Flickr (http://www.flickr.com/), a popular image hosting website. The idea of the
mashup is to present tweets in visually attractive way and combine those with images that are related to the tweet’s
topic. Using the Twitter user name that the user has provided, the application acquires the last two hundred tweets
and presents them on a timeline. When the user selects a tweet, one of the words in the entry is selected randomly
and used as a keyword for the Flickr search. The image retrieved is then displayed alongside the tweet. In Table 2
we have described how this mashup follows the guidelines and the reference architecture presented earlier.

Figure 3. Twitter Image Mashup (Image of cars by Luke Jones, available under Creative Commons Attribution
License).

DEVELOPING CLIENT-SIDE MASHUPS 9

Table 2. Evaluation of the Twitter Image mashup in view of our guidelines and reference architecture

Mashup Design Using the mashup with mobile devices is possible, as renderer widgets are compatible with
most mobile web browsers. Renderer scales the content according to the screen resolution of
the host device. Widgets used in the mashup can be manipulated with touch screen.

Data parsing is done with jQuery’s XML and JSON parsers.

Interfacing with
web services

The mashup uses both JSONP and XML requests through two different proxies to access
content from other domains.

Mashup is built on the well-established Twitter and Flickr services. Only basic functionality
of Flickr (XML) and Twitter (JSON) APIs are used.

Broader
considerations

Flickr TOS (Terms of service) require showing a certain message on mashup.

Mashup reference
architecture

The content extractor and formatter are combined into a single function, separate for each
service.

The mashup creation function is executed when a user clicks items on the timeline.

Renderer consists of a third party timeline and image presenting widgets.

Mashup manager functionality is integrated into content extractor that uses fallback
mechanisms to ensure partial functionality.

The Twitter and Flickr services used in this mashup are reliable and established web services. However, if
either of the services were inaccessible for some reason, it would be easy to replace the service used with another.
For example, if the Flickr image search would become inoperative, our application could use Google Image Search
instead. As the image used to visualize the Twitter entry is defined by a URL, only those functions that form the
request and parse the response would need to be modified.

In order to simplify the development of this application, and to make the application visually more
attractive, some JavaScript libraries were again utilized. The multipurpose JavaScript library jQuery
(http://jquery.com) was used for parsing the XML formatted data. The draggable timeline was created using SIMILE
Timeline widget (http://code.google.com/p/simile-widgets/). The image gallery component Highslide JS
(http://highslide.com/) was used to enable zooming and moving of Flickr images inside the browser viewport.

The Twitter API enables fetching data in the JSON format, which simplifies development considerably. We
used embedded <script> tags in our HTML code to bypass the restrictions arising from the same-origin policy
(Rudeman, 2010). In addition, we utilize a technology called JSONP. JSONP makes it possible to provide a callback
function to which the JSON data is passed on so that it can be processed further after the retrieval. Listing 1 shows
the HTML code that initiates the fetching of the Twitter user latest status and handles the response from Twitter.
When the data has been obtained, the execution proceeds to the callback function twitterUserStatusCallback. This
function processes the JSON file that is obtained using the Twitter user API by adding the user tweets into the
timeline widget.

DEVELOPING CLIENT-SIDE MASHUPS 10

function getTwitterTimeline(username) {
 var url = "http://twitter.com/statuses/user_timeline/" +
 username +
 ".json?callback=twitterTimelineCallback&count=200";
 var script = document.createElement('script');
 script.setAttribute('src', url);
 document.getElementsByTagName('head')[0].appendChild(script);
}

function twitterTimelineCallback(obj) {
 if(obj != undefined) {
 addTweetsToTimeline(obj);
 }
}

Listing 1. Using JSONP and the a dynamically added <script> tag to bypass the same-origin policy

Note that this example is not particularly elegant or complete. For instance, it does not take into account
security issues that arise from the vulnerability of JSONP to man-in-the-middle attacks; in general, JSONP should
not be used to transport sensitive data. If used, the handled data should be sanitized and filtered properly before
processing. In addition, using JSONP allows the remote site to inject any JavaScript code into the original website
instead of expected clean data wrapped into the specified callback. Therefore, JSONP should not be used, if the
remote site is untrustworthy.

Based on a random keyword found from the selected Twitter tweet, an image from Flickr is obtained.
Because the Flickr API was used with XML instead of JSON, we could not use a dynamic <script> tag to access the
data. Instead, we accessed the Flickr API with asynchronous AJAX calls.

To test different methods for bypassing the same origin security restrictions of the web browser, two
variants of this mashup were developed. One was implemented using an Adobe Flash object based proxy and
another one with a proxy on a server.

The first variant uses a Flash object based proxy to request image data from the Flickr API. This kind of an
approach is possible only if the remote server provides a special file that grants access to remote domain Flash
objects. Another restriction is that the user must have the Adobe Flash plugin installed and enabled in the web
browser. If these two conditions are fulfilled, JavaScript functions can interact with the Flash component and use it
to send cross-domain requests. Utilizing the Flash object based proxy does not require any server-side scripting,
which may be a significant advantage in many situations.

The second variant utilizes a server-side PHP proxy for image data requests. This kind of a proxy does not
have any special requirements for the remote server. No plugin component is required on the client side (in the web
browser). However, the mashup application must be placed on the server with scripting support, which can be
considered as a downside since in many cases the application developer does not have the necessary rights to control
the content on the web server.

5.2 Webcam Map Mashup Using Qt
Our second sample mashup, Webcam Map Mashup (see Figure 4), combines maps from Google Maps

(http://code.google.com/apis/maps/) and web camera images from Webcams.travel
(http://webcams.travel/developers). The general idea of the application is to automatically locate the nearest web
cameras when the user chooses a specific city or location by browsing the map. When a camera is found, a marker is
placed on the map at the actual location of the camera. Furthermore, a small semi-transparent image of the
corresponding camera view is displayed on the map. When the user places the mouse cursor over such an image, the
image is enlarged and made opaque for better viewing. The user can drag the small images around or close them by
double-clicking the desired images. In Table 3 we have described how this mashup follows the guidelines and the
reference architecture presented earlier.

DEVELOPING CLIENT-SIDE MASHUPS 11

Figure 4. Webcam Map Mashup

Table 3. Evaluation of the Webcam Map mashup in view of our guidelines and reference architecture

Mashup Design Qt-based scripting runtime is used for creating the user interface. On mobile device the user
interface scales automatically to full screen and can be manipulated solely with touch input
methods.

The runtime requires quite a lot of processing power to run smoothly. A recent high-end
mobile device is required for enjoyable user experience.

Interfacing with
web services

Well-established Google Maps and Panoramio services are used as data sources for the
mashup. The Google Maps API version is locked so that it will not change unnoticed.

Broader
considerations

Panoramio terms of use require a certain message as well as some links to be shown on the
mashup. Google’s terms of use deny covering the Google logo placed on the map.

Mashup reference
architecture

Qt classes for networking are used as content extractors when accessing Panoramio and
Google Maps APIs.

Whenever new content is received, it is reformatted and stored using an intermediate
representation. Availability of new content triggers the mashup creation function that places
the icons representing web cameras on top of the map.

Renderer consists of Qt’s widgets and a Google’s Map component. Rendering data received
from Panoramio is performed utilizing Google Map widgets.

Mashup manager functionality is integrated into content extractor and mashup creation
functions.

DEVELOPING CLIENT-SIDE MASHUPS 12

The Webcam Map mashup utilizes Qt application framework and the Qt JavaScript bindings constructed
using an open source generator (http://labs.trolltech.com/page/Projects/QtScript/Generator). This kind of an
approach does not suffer from the same limitations as the more traditional mashups running on the client in a web
browser. For instance, the application can flexibly obtain data from any web site, and present the data utilizing the
rich GUI widgets and other components offered by the Qt framework. Our experiences in developing mashups with
Qt have been described more extensively in another paper (Nyrhinen et al., 2009).

The Google Maps API provides a flexible map component that can be used for visualizing webcam
locations. To embed the map component, JavaScript code from Google needs to be added to the web page. The map
component can be manipulated with numerous JavaScript functions that can be used, for example, to add or remove
markers, change the map location or bind event handlers to user actions.

The Webcams.travel API (http://www.webcams.travel/) is used with requests compatible with the RESTful
architecture (Fielding & Taylor, 2002). Information about webcams around the map center can be obtained with the
standard HTTP/GET operation. The desired data is available in XML, JSON and PHP formats.

Terms of use of the Webcams.travel API (http://fi.webcams.travel/developers/terms) require that every
webcam image displayed must have a link to the webcam at Webcams.travel webpage, and the name of the user who
owns the webcam must be shown in the context of the webcam, with a link to the user profile. Furthermore, the
terms of use require that a link to Webcams.travel with the text ”Webcams provided by webcams.travel” must be
included. All these requirements were taken into account when composing the mashup, as can be seen in Figure 4.

The use of Qt makes cross-site network requests simple. Listing 3 shows an example in which a URL is
created and the class QNetworkAccessManager is then used to request webcam data. When the request is complete,
a separate callback function getCamsCallback will be invoked to handle the results.

QWebcamMap.prototype.getCams = function() {
 var requestStr = this.WT_REST_REQ
 + 'wtc.webcams.list_nearby&devid='
 + this.WT_DEVID
 + '&lat=' + mapCenter.y
 + '&lng=' + mapCenter.x
 + '&format=json';
 var am = new QNetworkAccessManager(this);
 am["finished(QNetworkReply*)"].connect(
 this, this.getCamsCallback
);
 am.get(
 new QNetworkRequest(
 new QUrl(requestStr)
)
);

}

Listing 2. Function getCams

5.3 Multi-User Location Mashup
Our third example mashup, Multi-User Location Mashup (Figure 5), is a collaborative application that

utilizes a map component and a location database that contains the current GPS location of the users. The general
idea of the mashup is to interactively present the current location of all the users and their status over the map.
Nicknames are used for identifying the different users and the status of each user is represented with a simple text
string. In Table 4 we have described how this mashup follows the guidelines and the reference architecture
presented earlier.

DEVELOPING CLIENT-SIDE MASHUPS 13

Figure 5. Multi-User Location Mashup built using Qt Quick, a location server and location-based GPS information

Table 4. Evaluation of the Multi-user location mashup in view of our guidelines and reference architecture

Mashup Design Qt Quick is specially designed with touch interfaces in mind. The mashup can be used both
desktop as well as mobile devices with touch screen.

Colibri widget library is used for the user interface.

Qt Quick runtime is designed for devices with limited processing power. Heavy operations
are executed with native components. This makes the mashup responsive when it is
executed on mobile devices.

Some “eye candy” features such as animations and fade-outs are added to make the user
interface more attractive.

Interfacing with web
services

Qt Quick offers web service interfacing mechanisms that are similar to those offered by the
web browsers. This makes communication with the JSON database straightforward.

JSON data is parsed using a special purpose library.

Broader
considerations

There are no legal issues related to this mashup.

Since we use our own server, we could implement a data format that is convenient to work
with.

Mashup reference
architecture

Qt Quick elements for accessing web resources are used as content extractors.

Mashup data updates occur in fixed intervals. When new data is received, it is stored and
formatted into custom Qt Quick elements.

Mashup function is implemented as a JavaScript function that updates the user interface.

Renderer consists of Qt Quick widgets.

DEVELOPING CLIENT-SIDE MASHUPS 14

The Multi-User Location Mashup was developed as a Qt Quick widget, using declarative QML language to
define the mashup user interface as well as the data handling functions. Similarly to Webcam Map Mashup
described above, the application is liberated from the restrictions commonly associated with the web browser,
especially the same origin policy. This application can also be executed in a mobile device. In that case, the
application can utilize the GPS peripheral device that may be available on a mobile device. For testing purposes
prerecorded GPS data can be used as a location data instead of live data. Colibri user interface widget library is used
for buttons and text edit dialogs.

Since this application relies on native Qt interfaces that have access to mobile device peripherals, accessing
the GPS peripheral is very straightforward by using a QML Coordinate element for map positioning. Likewise, a
native QML Plugin component to show a map tiles is utilized, and therefore the actual mashup is created with very
few lines of code. Listing 3 contains an example how the map user interface element is defined. The listing includes
two calls to a procedural JavaScript function setUsersOnMap that positions the icons representing users on top of
the map element.

Map {
 plugin: Plugin { name : "nokia"; }
 zoomLevel: 7;
 mapType: Map.SatelliteMapDay;
 center: Coordinate {
 latitude: defaultLatitude;
 longitude: defaultLongitude;
 }
 onCenterChanged: {
 setUsersOnMap();
 }
 onZoomLevelChanged: {
 setUsersOnMap();
 }
}

Listing 3. Defining a Map user interface element of a mashup

At the implementation level, this application utilizes an open source JSON database and JavaScript
application server called Persevere (http://www.persvr.org/). Persevere is very convenient when using JavaScript,
especially when accessing data through JSON HTTP/REST calls.

6. Experiences
Following the guidelines and the reference architecture was successful in our example mashup

implementations. In the following we share our experiences on some particular details.

Mashups are generally very vulnerable to changes that occur when the data and interfaces offered by web
services are modified. It is also relatively common for web services that are still under development or of beta
quality to become unavailable for extensive periods of time. Our experience is that even well established web
services may have occasional service breakdowns. Furthermore, mashups that rely on the availability of specific
data and specific data formats and interfaces tend to break down easily when such changes occur. Such experiences
motivated and underlined our advice to “send notification and provide a fallback solution upon service breakdown”.

Data exchange in mashups is commonly based on established formats such as JSON and XML. However,
in many cases application-specific or service-specific custom formats are used. At times, the developer has to
“scrape” and parse the required data manually from an HTML page using the limited facilities that are available in
the web browser. This can be rather cumbersome and slow. Furthermore, the asynchronous loading of data that is
characteristic of web applications today often causes timing problems when data is received from multiple sources.
This is another reason to follow our original linear architecture model.

The overlapping nature of web services poses an interesting challenge. It is common that there are several
competing services providing similar functionality. This makes it possible to implement fallback mechanisms
without degradation of user experience. For example, a map component for a mashup application can be obtained
from Google Maps, Microsoft Bing, Yahoo! Maps or OpenStreetMap map services. The terms of use, availability of

DEVELOPING CLIENT-SIDE MASHUPS 15

the services, features offered by the sites, and response times can vary considerably between different services,
though. Moreover, the interfaces of these services are different, sometimes proprietary, and – for some of the
services – relatively unstable and poorly documented.

There are many other technical challenges. For instance, some web services have limitations in their APIs
regarding the maximum number of requests that are allowed from a single domain within a certain period of time –
such limitations are important in protecting the service from denial of service (DoS) attacks. Furthermore, it is
common for service providers to utilize mechanisms that monitor the number of requests from a single domain.
Some popular services such as Google Maps require a proper API key when making API calls. An API key is a
unique string that is issued by the service provider to identify application and bind it to a previously issued domain.
Typically license terms strictly forbid the sharing of API keys. This can be a problem when developing widgets or
independent web applications that do not use the typical browser-based approach to access the service.

There are major challenges regarding intellectual property rights as well. A mashup is typically bound to
several services, with varying terms of use and licensing conditions. It may be impossible to combine certain pieces
of available content due to copyright and licensing issues. Protecting the mashup itself from unauthorized use or
copying is also very difficult. One can use obfuscation, but this will complicate the development of even more
compelling mashups that would build on top of this particular (obfuscated) service.

Adhering to our mashup reference architecture can be difficult with some implementation technologies. For
instance, the graphical widgets of the Qt library follow the MVC architecture in managing the relationship between
the data and the way it is represented to the user. The dependencies assumed by the built-in MVC architecture in
those components can make it difficult to adapt the components to a reference architecture such as ours. Such
problems are common in any software system that utilizes multiple component frameworks or design paradigms
simultaneously.

7. Conclusions and Future Directions
Software mashups – web applications that are based on the ability to combine code and content from

multiple web sites all over the world – have given rise to an entirely new way of creating software. It is increasingly
common to find compelling web applications that aggregate and deliver images, text, and other data from numerous
web sites in an innovative and often entirely unforeseen fashion.

In this paper we presented a set of guidelines for mashup design and web service integration. The
guidelines can help developers to create compelling, robust and maintainable mashups. In addition, we discussed the
standardization and legal issues, as well as presented a reference architecture that can be used as a starting point for
mashup development. Furthermore, we presented three hands-on examples of mashup applications, followed by a
discussion on our experiences in developing them.

As we emphasized in the paper, mashup development is still a relatively immature area, leaving plenty of
challenges for the future work. In general, the development of mashups is subject to a number of problems and
limitations. Many of these problems arise from the fact that the web browser was originally designed for viewing
relatively simple hypertext documents – not for executing full-blown web applications with complex interaction
with various external services. The security mechanisms of the web browser are poorly suited to client-side mashups
(Taivalsaari & Mikkonen, 2008). Liberating mashups from such restrictions with caching, proxies, and other
fallback mechanisms is an important direction for the future work. Plenty of interesting work remains also in the
area of methodological foundations for mashup development, not to mention intellectual property, copyright and
licensing issues. One especially interesting future direction would be to evolve our current guidelines towards full-
fledged design patterns for client-side mashup development.

The upcoming HTML 5 standard (Hickson, 2011) will open up interesting avenues for the mashup
development. Support for techniques such as WebSockets, DOM storage, cross-document messaging and history
management in a HTML5 compliant web browser will have a significant impact on mashup programming. It will be
very interesting to test these techniques in practice, as well as to evaluate and understand the remaining limitations
and challenges. Another interesting development is WebGL that enables procedural graphic interface in web
browser. WebGL can be used for creating both 2D as well as 3D graphics without plug-ins components. This
relieves developers from the limitations of the DOM-based I/O model of the web browser. From the viewpoint of
mashup development, WebGL enables persuasive graphics and even social 3D spaces in which users can collaborate
and share their data in novel, innovative ways. The development of large-scale mashups is another interesting area

DEVELOPING CLIENT-SIDE MASHUPS 16

for future work. At present, most mashups are relatively small in terms of the number of lines of code and overall
complexity. The development of large-scale mashups consisting of tens or hundreds of thousands of lines of code is
still largely an unexplored area.

Finally, we are especially excited about the emerging trend towards mashware (Taivalsaari, 2009) – full-
fledged mashup applications that consist of software components that have been downloaded from multiple sites and
then dynamically combined into new applications. So far, most mashups have been built around data and other static
components (e.g., images) that have been downloaded from different sources. The future challenge is to go beyond
data, and to enable the flexible combination of software components from all over the world. Possible examples of
such components include UI components, specialized financial libraries, mathematical libraries, and so on.
Mashware could potentially be created by the end users themselves by combining components that are suitable for
their needs. The primary obstacle in the development of mashware is security; sadly, with the current security
solutions on the Web, the development of applications that combine code from multiple origins is still
fundamentally unsafe. We hope that this article, for its part, encourages people to develop solutions for this exciting
new area.

References
Cappiello, C., Daniel, F., & Matera, M. (2009). A quality model for mashup components. In Proceedings of the 9th

international Conference on Web Engineering (pp. 236-250). Berlin, Heidelberg: Springer-Verlag.

Crockford, D. (2008). Javascript:The good parts. O'Reilly Media, Inc.

Eckerson, W.W. (1995, January). Three tier client/server architecture: Achieving scalability, performance, and
efficiency in client server applications, Open Information Systems, 10(1).

Fielding, R. T. & Taylor, R. N. (2002). Principled design of the modern web architecture. ACM Transactions on
Internet Technology, 2(2), 115-150.

Flanagan, D. (2006). JavaScript: The definitive guide, 5th ed. O'Reilly Media.

Hickson, A. (2011). HTML 5. a vocabulary and associated APIs for HTML and XHTML. W3C Working Draft 25
May 2011. Retrieved June 2, 2011, from http://dev.w3.org/html5/spec/.

van Kesteren, A. (2010). Cross-origin resource sharing. W3C Working Draft, July 27, 2010. Retrieved June 2, 2011,
from http://www.w3.org/TR/cors/.

Krasner, G. E. & Pope S.T. (1988) A cookbook for using the model-view-controller user interface paradigm in
Smalltalk-80. Journal of Object-Oriented Programming, 1(3), 26-49.

Lee, C., Tang, S., Tsai, C., & Chen, Y. (2009). Toward a new paradigm: Mashup patterns in Web 2.0. WSEAS
Transactions on Information Sciences and Applications, 6(10), 1675-1686.

López, J., Bellas, F., Pan, A. & Monoto, P. (2009). A component-based approach for engineering enterprise
mashups. In Proceedings of the 9th International Conference on Web Engineering (pp. 30-44). Berlin,
Heidelberg, Springer-Verlag.

López, J., Pan, A., Bellas, F. & Montoto, P. (2008) Towards a reference architecture for enterprise mashups. Actas
de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, 2(2), 67-76.

Mikkonen, T. & Salminen, A. (2011) Towards a reference architecture for mashups. In Proceedings of the Second
International Workshop on Variability, Adaptation and Dynamism in Software Systems and Services (pp.
647-656). Berlin, Heidelberg, Springer-Verlag.

Molich, R. & Nielsen, J. (1990) Improving a human-computer dialogue. Communications of the ACM 33(3), 338-
348.

Nestler, T. (2008). Towards a mashup-driven end-user programming of SOA-based applications. In Proceedings of
the 10th international Conference on Information Integration and Web-Based Applications & Services (pp.
551-554). New York, NY: ACM.

Nielsen, J. (1994) Heuristic evaluation. In Usability Inspection Methods, (pp. 25-62). John Wiley & Sons, Inc., New
York, NY, USA.

DEVELOPING CLIENT-SIDE MASHUPS 17

Nyrhinen, F., Salminen, A., Mikkonen, T. & Taivalsaari, A. (2009). Lively mashups for mobile devices. In
Proceedings of the First Annual International Conference on Mobile Computing, Applications, and
Services (pp. 123-141). Berlin, Heidelberg: Springer-Verlag.

Ogrinz, M. (2009). Mashup patterns: Designs and examples for the modern enterprise. Pearson Education Inc.,
Boston, MA, USA.

Reenskaug, T. (1979) Thing-model-view-editor - An example from a planningsystem. Technical note, Xerox PARC,
May 1979.

Reenskaug, T. (1979) Models-views-controllers. Technical note, Xerox PARC, December 1979.

Ruderman, J. (2010). Same origin policy for JavaScript. June 14, 2010. Retrieved July 5, 2010, from
https://developer.mozilla.org/en/Same_origin_policy_for_JavaScript.

Salminen, A., Nyrhinen, F., Mikkonen, T. & Taivalsaari, A. (2010). Developing client-side mashups: experiences,
guidelines and the road ahead. In Proceedings of MindTrek 2010 Conference (pp. 161-168). New York,
NY: ACM.

Taivalsaari, A. (2009). Mashware: The future of web applications. Technical Report. UMI Order Number:
SERIES13103., Sun Microsystems Laboratories, Inc.

Taivalsaari, A. & Mikkonen, T. (2008). Mashups and modularity: Towards secure and reusable web applications. In
Proceedings of 1st Workshop on Social Software Engineering and Applications (pp. 25-33). L'Aquila, IEEE
Computer Society Press.

Tufte, E. R. (1983). The visual display of quantitative information. Graphics Press.

Wong, J. & Hong, J. (2008). What do we "mashup" when we make mashups? In Proceedings of the 4th
International Workshop on End-User Software Engineering (pp. 35-39). New York, NY, ACM.

Yu, J., Benatallah, B., Casati, F., & Daniel, F. (2008). Understanding mashup development. IEEE Internet
Computing, 12(5), 44-52.

Zang, N., Rosson, M. & Nasser, V. 2008. Mashups: Who? What? Why?. In CHI '08 Extended Abstracts on Human
Factors in Computing Systems (pp. 3171-3176). New York, NY, ACM.

Özses, S. & Ergül, S. (2009). Cross-domain communications with JSONP. February 24, 2009. Retrieved June 2,
2011, from http://www.ibm.com/developerworks/library/wa-aj-jsonp1/.

Publication VII

Mashups in Web 3.0

A. Salminen

c©2012 SciTePress. Reprinted with permission, from the Proceedings of 8th
International Conference on Web Information Systems and Technologies
(WebIST 2012).

MASHUPS IN WEB 3.0

Arto Salminen
Department of Software Systems, Tampere University of Technology, P.O. Box 553, FI-33101, Tampere, Finland

arto.salminen@tut.fi

Keywords: Mashups, Web 3.0.

Abstract: Web has developed into a platform where applications live as services. This is referred to as Web 2.0. The
next version, Web 3.0, refers to using the Web in a new way in new domains. In addition to realizing se-
mantic web, Web 3.0 includes other advantageous concepts too. This paper discusses about mashups in
Web 3.0 and describes how mashups will be an integral part of it. Moreover, we will point out some re-
markable technical solutions that enable new kind of mashups and speculate about the time when these
mashups can be fully implemented and realized.

1 INTRODUCTION

The way the Web is used has gone through signifi-
cant changes. The Web 1.0 was a simple platform
for browsing static documents that were connected
with hyperlinks. Next version, Web 2.0, introduced
user created content in a significant degree as well as
collaboration between users. Communities and so-
cial networks as well as different services that en-
abled sharing videos, images and texts became
popular. Mashups, web applications that integrate
resources — i.e. the content created by users and
enterprises — over the web were developed into a
new breed of software that is widely utilized in dif-
ferent domains including mobile and desktop plat-
forms. Currently, we are experiencing a paradigm
shift towards web-based software (Taivalsaari,
Mikkonen, Anttonen and Salminen, 2011), which
consists of resources that can be located anywhere in
the world and require no installation or manual up-
dates. This has had a great effect not only on how
software is used but also on development and de-
ployment of software (Taivalsaari et al., 2011). In
other words, what used to be a document browsing
platform has become a means of communication
with short messages and live audio, a place for mu-
sic and video entertainment as well as a platform for
full fledged applications such as text and spreadsheet
editors and games. However, the evolution of the
Web has not ceased, and as technical and other bar-
riers are overcome it turns into version 3.0.

There is no clear definition for Web 3.0. Some
use the term as a synonym for semantic web

(Hendler, 2009). Others, however, think that Web
3.0 refers to new ways to use the web, and using it in
new domains (Silva, Saleh, Rahman and El Saddik,
2008). Our perception of Web 3.0 is the latter.
Similarly to Silva et al. (2008), we define Web 3.0
as “tomorrows web” that is ubiquitous and
pervasive, which, in addition to semantic web,
utilizes also other concepts such as ambient
intelligence, smart interfaces and intelligent agents.
In addition to these, in our view the Web 3.0
includes the concept of mashware, software created
as a mashup as described in a technical report by
Taivalsaari (2009). Mashware enables personaliza-
tion and on-fly customization of web applications;
ideally automatically or by the users.

As already pointed out, mashups combine
content from more than one source into an integrated
experience. This ability to aggregate content
leverages the power of the Web to support
worldwide sharing, accessing and reusing resources
from different locations or in different contexts.
Consequently, mashups, as well as mashware,
demonstrate the capability of the Web to act as
global-scale distribution channel for arbitrary
distributed applications.

In this paper we discuss about mashups utilizing
Web 3.0 concepts and technologies and present our
view on what will happen in the future in the domain
of mashups. In addition we describe forthcoming
issues that are related to software mashupping using
new web technologies. To gain better understanding
about how Web 3.0 will benefit mashup developer,
we start with a brief background study about the

189

concept.
This paper is structured as follows. In Section 2,

we present the concepts that are included and
discussed about under term “Web 3.0”. In Section 3,
we describe mashups that are enabled by Web 3.0
technologies and present examples of applications
available today. Finally, in Section 4, we conclude
the paper.

2 WEB 3.0 CONCEPT

We do not use term “Web 3.0” as a synonym for
semantic web. Our perception of Web 3.0 contains
not only the ideas introduced as “semantic web” but
a lot more. Term “semantic web” refers to extending
web documents so that information in them has clear
meaning understandable for machines (Berners-Lee,
Hendler and Lassila, 2001; Shadbolt, Berners-Lee
and Hall, 2006). It can be used to create interoper-
able websites that make information exchange ef-
fortless. For example, semantic web has been suc-
cessful in the domain of scientific publications (Das,
Goetz, Girard and Clark, 2009). In our view, seman-
tic web is an enabler for Web 3.0 applications but
there are other aspects as well.

In the Web 3.0, the connection with the rest of
the world via Internet is pervasive. It is available at
everywhere for everyone at anytime. This has been
achieved already as mobile terminals — that have
become inexpensive enough for everyone to pur-
chase — enable us to be online at all times, without
interruption. However, as new web-enabled devices
have been introduced, web applications can reach
new fields of everyday devices. Game consoles,
televisions and set top boxes already contain web
applications and similar capabilities are spreading
into cars, book reading devices and picture frames,
for instance. Furthermore, progress of ubiquitous
technologies (Weiser, 1991) makes everyday arte-
facts connected to the Internet, thus transforming
their data into resources for applications.

Another interesting development related to per-
vasive computing is ambient intelligence, which is a
slightly different concept. Ambient media or intelli-
gence refers to systems that are unobtrusive, context
aware, personalized, adaptive and anticipatory
(Zelkha, Epstein, Birrell and Dodsworth, 1998). It
emphasizes the ability of devices to communicate
and make decisions independently without user
interaction. Ambient media has been included in
Web 3.0 concept by Silva et al. (2008). This pro-
vides another view to web as a pervasive platform
used for making daily tasks easier.

Our view to Web 3.0 includes the concept of
mashware (Taivalsaari, 2009) as well. In mashware,

the idea of mashups has been expanded into soft-
ware. Mashware is created from software compo-
nents that are retrieved from all over the web and
composed together without static linking or pre-
processing. Realizing mashware in the full extend
would allow really large-scale collaboration between
developers as application components could be
shared and reused without restrictions. Similarly,
what has been achieved with current mashup tools
(see a detailed summary in (Taivalsaari, 2009)),
mashware applications could be developed possibly
by the end-users themselves. Mashware, naturally,
requires well-defined interfaces and we believe that
a lot can be learnt from the work already done in the
domain of semantic web.

Interestingly, Google’s CEO Eric Schmidt de-
scribed ideas similar to mashware when he gave his
definition for Web 3.0 at Seoul Digital Forum in
2007. Schmidt’s definition remarked that Web 3.0
applications will be pieced together, relatively small,
able to be run on any device, fast and customizable,
distributed via social networks and using data stored
in the cloud. Certain characteristics, i.e. “pieced
together”, “fast and customizable” and “using data
stored in the cloud”, are features of mashware as
well. However, according to Taivalsaari (2009),
mashware is not limited to small applications, and
distribution through social connections. Further-
more, mashware does not require universal-scale
cross-platform compatibility even though this can be
achieved with certain technologies.

Mashups rely on web services that are accessed
through APIs. Therefore, mashups benefit greatly
from recent developments called Open Web and
Open API. The term Open Web refers to develop-
ment promoted by Open Web Foundation, which is
founded by major web organizations and aimed at
promoting specifications that are royalty free and
compatible with open licenses. This makes using
different interfaces in co-operation easier. An inter-
face following Open Web recommendations and
available to be used by different parties is referred to
as an Open API.

2.1 Enabling Technologies

Web 3.0 is driven by technological challenges that
include implementing semantic web, expanding web
browser capabilities, having reliable high bandwidth
network connections, and linking physical world
with the Web.
Semantic Web. Giving semantics for data refers to
turning it into information that can be processed
independently by machines. In the domain of the
Web this means giving well-defined structure and
meaning for data stored currently within unstruc-

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

190

tured and meaningless web documents. Languages
and frameworks that can be used to achieve this
already exist. RDF (Resource Description Frame-
work), for instance, can be used with OWL (Web
Ontology Language) or XML (eXtensible Markup
Language) to describe the meaning of data within
structured web documents.

In addition, there are solutions that can be used
with the HTML, language currently used to describe
most documents available in the Web. Microformats
and microdata, the former described by the micro-
formats community (http://www.microformats.org)
and the latter introduced as part of HTML5 specifi-
cation (Hickson, 2011), can be used to annotate the
content with machine-readable labels. These solu-
tions are lightweight, simple and evolutionary, in
contrast to RDF used with OWL or XML, which can
be described as revolutionary, but more complex and
difficult to understand as well.
Web Browser Capabilities. Web browser perform-
ance has been increasing at unforeseen pace during
last few years. Performance in JavaScript execution
has skyrocketed thanks to development of powerful
engines during ongoing JavaScript engine race
started in 2008 between major browser vendors. In
addition to code execution performance, also docu-
ment rendering speed has evolved.

Two developments, HTML5 and WebGL, have
significantly improved capabilities of web browser
as a next generation application platform. HTML5
specification (originally named Web Applications
1.0) determines features that are typical for desktop
applications and makes them available in browsers
implemented as native features. These features in-
clude support for drag and drop, local data storage
(offline functionality), drawing surface available for
direct access by graphics hardware as well as video
and audio playing capabilities. Even though HTML5
specification is still at the draft stage many features
have already been implemented by browser vendors
and included in stable versions of web browsers.

WebGL is a technology that enables hardware
accelerated 3D graphics in a web browser. This is
remarkable because it allows visually attractive
games and other applications to be created without
browser plug-ins. WebGL can be used for 2D graph-
ics as well, and this enables developers to create
graphics in procedural style without web browsers
document object model (DOM), which is aimed at
presenting static documents. WebGL specification
has reached its first stable version number 1.0. Be-
cause of WebGL is a very low level interface, nu-
merous higher level frameworks and libraries have
been developed to make it easier and faster to create
WebGL applications.

Cross-origin Resource Sharing. One of the signifi-
cant problems in composing mashups has been web
browsers poor capability to communicate across
domains. Because of restricting security model of
web browsers, also known as the Same Origin Pol-
icy, to be able to communicate directly with differ-
ent web services one has need to use some cumber-
some workarounds, such as dynamically inserted
script elements and JSON with padding (JSONP).
These workarounds are typically prone to security
threats. Thanks to a recent specification called
CORS (Cross-origin resource sharing) by W3C,
mashup developers will be able to make cross-
domain requests in similar fashion as the same do-
main requests. However, CORS needs to be imple-
mented by service providers and it is currently sup-
ported by only a few services.
High Bandwidth Connections. High bandwidth
Internet connections are already available for house-
holds and the price of subscribing for a high band-
width connection in western countries has decreased.
However, numerous areas exist where the prices are
still relatively high. In addition to fixed Internet
connections, mobile connections with fixed rate data
plans have rapidly become common in western
countries. According to the OECD’s latest statistics
(December 2011) there are 309 million fixed and
590 million mobile broadband subscriptions. Num-
ber of wireless subscriptions rose 26 % during last
year whereas the number of fixed subscriptions was
increased only by 5.8 %.

In spite of the increase in mobile subscriptions,
mobile Internet is still often unreliable, and it suffers
from different kinds of defects. For instance, mobile
connections typically suffer from long latency times
and issues on handover situations, which can be
major shortcomings with certain types of applica-
tions. Luckily, new cellular broadband technologies
are providing solutions for these and other technical
issues.
Linking Physical World with the Web. Linking
the physical world with web capable applications
such as mashups can add a new dimension to the
user experience of a mashup. Location-awareness
has already been proven successful in mobile games,
in which it has been found to be a very attractive
feature (Korhonen, Saarenpää and Paavilainen,
2008). In addition to player location, physical arte-
facts have been incorporated into games as well
(Reid, 2008). Similar idea would benefit mashups as
well. However, linking not only location but also
physical items into the mashup requires some infra-
structure to be built. The infrastructure, however,
does not need to be high-end technology, but simple
2D bar codes containing small amount of necessary
information of the linkage may be enough.

MASHUPS�IN�WEB�3.0

191

3 MASHUPS IN WEB 3.0

Mashups will take advantage on developing web
technologies and concepts introduced along Web
3.0. In the following, we discuss about how mashups
benefit from Web 3.0 technologies today, in near
and in distant future.

3.1 Mashups Today

Mobile Mashups. Most successful mobile mashups
today are those used for communication with multi-
ple instant messaging services. These are available
for all mobile operating systems and used quite
widely. Reasons behind this success of instant mes-
saging mashups are, first the obvious need for appli-
cations of this kind caused by rivalling instant mes-
saging service providers, and second the fact that
mobile devices suit particularly well for communi-
cating with other people. Another type of a success-
ful mobile mashup is map-based mashups. Typi-
cally, these mashups show some additional location-
related information on top of a map, for instance
some mashups show other user locations on a map.
Pervasive Mashups. Mashups can be found in eve-
ryday devices as well. Some televisions, for in-
stance, include media front-end applications that
have capabilities to present videos from multiple
web services. Furthermore, mashup for presenting
weather information is another popular application
in this kind of device.
HTML5 Mashups. Utilizing HTML5 in mashups is
already possible. With HTML5 creating mashups is
more straightforward. It enables using video and
audio elements in mashups without the need for
plug-ins. With HTML5’s WebSockets it is possible
to create real-time collaborative mashups, as they
can be used for low latency bi-directional communi-
cation without the overhead caused by HTTP, which
is used before for applications of this kind.

Using W3C’s Geolocation API it is possible to
create location-aware mashups. This enables some
context-awareness such as location dependent
searches and filtering. However, location accuracy
gained with this technology is sometimes very poor.
For instance, when travelling with a train and con-
necting to the web with the internal WLAN of the
train, Geolocation usually points to one of the sta-
tions that may be on the other side of the country.

As HTML5 specification and other new APIs are
relatively new and still at draft stage, it is necessary
to create fallback mechanisms if it is desired to be
sure that mashups relying on these techniques work

for all users. This adds complexity of mashup archi-
tectures and implementations.

3.2 Mashups in Near Future

Some Web 3.0 technologies are already available
outside research laboratories in commercial devices.
We anticipate that mashups relying on such tech-
nologies will be available in the near future. In the
following, we discuss about mashups that are built
on these technologies.
WebGL Mashups. WebGL specification enables
hardware accelerated 3D graphics in a web browser.
This technology has not been yet utilized in mash-
ups. 3D graphics could be well fitted into social
mashups which would be used to communicate with
other users in virtual spaces. Another way to use
WebGL in mashups could be creating new visualiza-
tions for services, for instance video and picture
services. Furthermore, 3D enables new ways to
present complex data. For instance, a stock mashup
that tries to compress enormous amount of informa-
tion in one screen could benefit from using WebGL
graphics to make the information easier to interpret.
Mashups Accessing Arbitrary Mobile Peripher-
als. Mashups with access to mobile device peripher-
als will become common in the near future. One
domain of such mashups is augmented reality.
Augmented reality mashup could access the camera
of the device and add information related to the
context of the user on top of the real time video. The
information would be retrieved from web services,
for instance a mashup could use a visual search
service to provide photos and details of an unidenti-
fied plant or access Wikipedia to provide additional
information about sights located around the user.
Mashups of this kind would rely on accurate infor-
mation about user location as well as device orienta-
tion.
Ambient Mashups. With ambient media, there are
possibilities for even more advanced mashups. Us-
ing a mobile terminal to have effortless access to
content relevant to the user context, and combining
this context with the resources of the Web, can be
very valuable for the user, especially if the mashup
could work autonomously without explicit user
input. Furthermore, if the mashup allows user col-
laboration, even richer user experiences can be pro-
vided.
Mashware. Another development in the near future
will be the first fully mashware applications. Mash-
ware will be combined from multiple components
according to user’s needs. For instance, a mashware
video player could be constructed from components
that are added according to which services the user

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

192

would like to access, what types of videos are played
and what type of device the player is executed on. If,
for instance, YouTube (http://www.youtube.com/)
and Vimeo (http://vimeo.com/) services were used,
the application would include interfaces only for
those services and exclude interfacing components
for Qik (http://qik.com/) and Yahoo Video
(http://screen.yahoo.com/). The player could add the
rendering component according to the video types so
that opening a video in Ogg Theora, H.264 and
Adobe Flash format would result in adding a corre-
sponding component to the application. Further-
more, the user interface of the player would be
added as a component so that a living room media
centre would have different look and feel than a
mobile version of the same application. These appli-
cation components could be downloaded over the
web from different services following a common
interface specification. Naturally it is possible to
provide a closed repository of components as well.
High-bandwidth Mashups. As mobile network
connections get faster it will be possible to develop
mashup applications that combine resources that
require a lot of bandwidth. This can be for instance a
high quality real time mobile television combined
with related web content.
Mashups Embedded in Everyday Devices. In
addition to televisions, other devices will have
mashup applications as well. Mashups will be in-
cluded in devices such as vehicles and game con-
soles. For instance a car navigator with a web con-
nection could show live weather information and
web camera images in addition to driving instruc-
tions. Furthermore, games can use mashups to add
changing content into the game worlds. These
mashups embedded in everyday devices will turn
more advanced as well when the full potential of
these specialized platforms is combined with web
resources in imaginative ways.
Mashups in Games. In the future, mashups will be
implemented within games as well. Web content
from different sources can elaborate games in nu-
merous ways. Dynamic content has already proven
to be successful in games (Vanhatupa, 2009). For
instance, game character’s presence could be added
with images and messages from players account on
social networking services. Game worlds could
include content from the real world, for example
news casts could be played and real weather condi-
tions could be reflected. Furthermore, games that are
relying on user context, such as location-aware and
augmented reality games, could naturally include
some web content that would complement the ex-
perience.
Mashups Utilizing Microformats. Microformats,
i.e. small details of information embedded in exist-

ing HTML documents, will be used in mashups as
well. These lightweight semantics are already widely
available, and using them in mashups is only a mat-
ter of time. Microformats are currently used by
search engines to annotate search results. In mash-
ups microformats could be used as an input when
requesting relevant content. Another option where
microformats are useful is content filtering.

3.3 Mashups in Distant Future

Some Web 3.0 technologies are not yet deployed in
public, or they have some technical issues that need
to be overcome before using them more widely. We
anticipate that it will take some time for mashups
relying on such technologies to emerge. In the fol-
lowing, we discuss about mashups that will be avail-
able in distant future as technical barriers are broken.
3D Mashware. As 3D web technologies have just
reached somewhat stable stage, it will take a while
for the first 3D mashware applications to become
existence. Adding third dimension to graphics re-
quires a new approach to user interface development
and therefore existing user interface frameworks
cannot be used. Furthermore, as the WebGL is a
rather low level interface, creating mashware de-
mands much attention to details. However, it is
likely that existing higher level libraries and frame-
works build for WebGL can be used as a stepping
stone. Yet another technical restriction is the inabil-
ity to use canvas element to render content formatted
in HTML. This makes it hard to reuse the existing
visual elements of the web that rely on Document
Object Model (DOM).
Mashups Relying on Semantic Web. The full-
fledged semantic web is still around the corner.
Utilizing semantic web’s full power in mashware
will result in mashups that are capable of including
new services and content types automatically.
Mashups could benefit from semantic web’s knowl-
edge about relations of artefacts (and users) in the
web and use it to provide information that is most
relevant to the user.
Mashups Utilizing Large-scale Physical Infra-
structure. Mashups that take advantage of physical
infrastructure build in everyday devices will eventu-
ally be available, but because of required installa-
tions of hardware, this is not possible in the near
future. However, mashups utilizing such physical
connection can be really innovative and useful. For
instance, Near-Field Communication (NFC) tags
installed into a retail store could be used as an input
for mashup providing price comparison information
as well as other information about products such as
possible use scenarios.

MASHUPS�IN�WEB�3.0

193

4 CONCLUSIONS

In this paper, we argued that mashups and mashware
are at the core of what is known as Web 3.0, the next
version of the web. Some mashups that utilize Web
3.0 technologies are already available and in wide
use. In addition to describing some examples of
today’s Web 3.0 mashups we pointed out mashups
and mashware applications that will likely be avail-
able in the near future. Furthermore, we discussed
some more advantageous ideas that will take some-
what longer to appear.

From software engineering point of view mash-
ups set an interesting challenge. Mashup design has
been previously considered as ad hoc activity with
minimal relation to software engineering practices,
architecting or disciplined development (Hartmann,
Doorley and Klemmer, 2008). However, our re-
search has been focused on describing disciplined
guidelines for mashup development (Salminen,
Nyrhinen, Mikkonen and Taivalsaari, 2010) as well
as general architecture for mashups (Mikkonen and
Salminen, 2011).

As technical issues are being solved in accelerat-
ing pace, our position is that mashups and mashware
will play an important role in how we will be using
the Internet in Web 3.0 era.

REFERENCES

Berners-Lee, T., Hendler, J. and Lassila, O. (2001, May).
The Semantic Web. Scientific American, 29-37.

Das, S., Goetz, M., Girard, L. and Clark, T. (2009). Scien-
tific Publications on Web 3.0 (pp. 107-129). Proceed-
ings of 13th International Conference on Electronic
Publishing, Milan, Italy.

Hartmann, B., Doorley, S., Klemmer, S. (2008). Hacking,
Mashing, Gluing: Understanding Opportunistic De-
sign. IEEE Pervasive Computing. 7(3), 46-54.

Hendler, J. (2009). Web 3.0 Emerging. IEEE Computer,
January, 42(1), 111-113.

Hickson, I. (2011). HTML Microdata, Editors draft. Re-
trieved March 12, 2012, from
http://dev.w3.org/html5/md/

Korhonen, H., Saarenpää, H., and Paavilainen, J. (2008).
Pervasive Mobile Games - A New Mindset for Players
and Developers. Proceedings of the 2nd International
Conference on Fun and Games (pp. 21-32). Springer-
Verlag, Berlin,Heidelberg.

Mikkonen, T. & Salminen, A. (2011). Towards a Refer-
ence Architecture for Mashups (pp. 647-656). Pro-
ceedings of the Second International Workshop on
Variability, Adaptation and Dynamism in Software
Systems and Services. Berlin, Heidelberg, Springer-
Verlag.

Reid, J., (2008). Design for Coincidence: Incorporating
Real World Artifacts in Location-based Games. Pro-
ceedings of the 3rd international conference on Digi-
tal Interactive Media in Entertainment and Arts (pp.
18-25). ACM, New York, NY, USA.

Salminen, A., Nyrhinen, F., Mikkonen, T. and Taivalsaari,
A. (2010). Developing Client-side Mashups: Experi-
ences, Guidelines and the Road Ahead (pp. 161-168).
Proceedings of MindTrek 2010 Conference. ACM,
New York, NY, USA.

Silva, J., Saleh, A., Rahman, M. and El Saddik, A. (2008).
Web 3.0: A Vision for Bridging the Gap between Real
and Virtual. Proceeding of the 1st ACM international
workshop on Communicability design and evaluation
in cultural and ecological multimedia system (pp. 9-
14). ACM, New York, NY, USA.

Shadbolt, N., Berners-Lee, T., and Hall, W. (2006). The
Semantic Web Revisited. IEEE Intelligent Systems
21(3), 96-101.

Taivalsaari, A. (2009). Mashware: The Future of Web
Applications. Sun Microsystems Laboratories Techni-
cal Report TR-2009-181.

Taivalsaari, A., Mikkonen, T., Anttonen, M., Salminen, A.
(2011). The Death of Binary Software: End-User
Software Moves to the Web (pp. 17-23). Proceedings
of the 9th International Conference on Creating, Con-
necting and Collaborating through Computing, Kyoto,
Japan.

Vanhatupa, J-M. (2009). Generative Approach for Extend-
ing Computer Role-playing Games at Run-time (pp.
177-188). Proceedings of 11th Symposium on Pro-
gramming Languages and Software Tools and 7th
Nordic Workshop on Model Driven Software Engi-
neering, Tampere, Finland.

Weiser, M. (1991). The Computer for the 21st Century.
Scientific American, 265(3), 3-11.

Zelkha, E., Epstein, B., Birrell, S., Dodsworth, C. (1998).
From Devices to "Ambient Intelligence", Digital Liv-
ing Room Conference.

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

194

Publication VIII

Implementing mobile mashware
architecture: Downloadable
components as on-demand

services

T. Mikkonen and A. Salminen

c©2012 Procedia. Reprinted with permission, from the Proceedings of The
9th International Conference on Mobile Web Information Systems
(MobiWIS 2012).

 Procedia Computer Science 10 (2012) 553 – 560

1877-0509 © 2012 Published by Elsevier Ltd.
doi: 10.1016/j.procs.2012.06.071

The 9th International Conference on Mobile Web Information Systems

Implementing mobile mashware architecture:
Downloadable components as on-demand services

Tommi Mikkonena* and Arto Salminena

aDepartment of Software Systems, Tampere University of Technology, FI-33720 Tampere, Finland

Abstract

The software industry is in the middle of a paradigm shift from desktop to mobile and web-based software. In the
new era, applications increasingly live on the Web as services that lend themselves for runtime configuration. The
associated delivery model, referred to on-demand software, or Software-as-a-Service (SaaS), implies that applications
do not require installation or manual upgrades by the end users, as they are loaded on the fly. Furthermore, applica-
tions that build on resources offered by other applications, referred to as mashups, offer increasingly interesting op-
portunities. We believe that the trend towards using the web as an application platform will only strengthen in the
future, and that instead of individual applications, it will also be possible to use application components in the same
way we today download complete applications – in essence the Web is used as an architecture and transport for dis-
tributed applications, similarly to e.g. Corba at the level of principal idea. In this paper, we provide an overview for
mashware computing, where downloadable components form applications in a piecemeal fashion, and enable rich
access to resources of devices in a programmer-friendly way. Furthermore, applications can be easily built by com-
ponents created by others and available as services. Finally, we demonstrate the capabilities of the concept with a
sample application and discuss the lessons learned during the design process.

© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of [name organizer]

Keywords: Web applications; mashup applications, on-demand software; mashware

1. Introduction

The software is in the middle of a paradigm shift installable desktop systems towards mobile and web-
based software. In the new era, applications live on the Web as services. The associated delivery model,
referred to on-demand software, or Software-as-a-Service (SaaS), implies that applications no longer re-

* Corresponding author. Tel.: +358 40 8490 749.
E-mail address: tommi.mikkonen@tut.fi.

Available online at www.sciencedirect.com

554 Tommi Mikkonen and Arto Salminen / Procedia Computer Science 10 (2012) 553 – 560

quire installation or manual upgrades. While being envisioned for a long time, the facilities of the Web are
fueling the transition in various forms, in part culminating in the possibility to run complete applications
online. Examples of such systems include in particular business applications such as accounting, customer
relationship management (CRM), enterprise resource planning (ERP), invoicing, human resource man-
agement (HRM), and content management (CM). In contrast, more traditional online applications for the
public end users include games, email, as well as office appliances in the form of Google Docs.

Within the field of web applications, mashups – applications that build on resources offered by other
applications, but combine them in an unforeseen fashion into an integrated experience – have become
increasingly common. We believe that this trend, enabled by the fact that for the first time we have a
global, uniform distribution channel, will only strengthen in the future, and that instead of individual ap-
plications using resources, it will also be possible to use application components in the same way we to-
day download complete applications as well as access on-line resources. This will then further pave the
way towards a component architecture that enables mixing and matching of pieces of software of different
origins, as well as creates a market for 3rd party software components in the global scale. In particular,
these facilities will be helpful in mobile setting, where usability issues, loading times and other restrictions
have formed an obstacle for application development.

In this paper, we first provide an overview for our vision of mashware computing, originally presented
in [13, 14], where downloadable components form applications in a piecemeal fashion and enable rich
access to resources of devices in a programmer-friendly way. In this context, term resource is used in a
wide sense, referring to real resources such as files, but also to services such as translation or rendering.
As a technical contribution, we demonstrate the capabilities of the concept with a proof-of-concept im-
plementation, which is the first concrete realization of the vision.

The rest of this paper is structured as follows. Section 2 discusses the background of the paper and pro-
vides an interview for the on-demand software delivery model and mashup development, with particular
focus on modularity issues. Sections 3 and 4 form the core of this paper by revisiting the concept of
mashware and by introducing in detail how we have implemented a mashware component that can be eas-
ily included in complete web applications. In Section 5, we provide an overview of an example applica-
tion that has been constructed in accordance with mashware principles. In Section 6, we provide an ex-
tended discussion on the lessons learned when composing the implementation as well as on related sys-
tems that already exist. Towards the end of the paper, in Section 7 we draw the final conclusions of our
work.

2. Background

The World Wide Web has undergone a number of phases to enable the development of on-demand
software. Initially, web pages were little more than simple textual documents with limited user interaction
capabilities, enabling only applications based on hyperlinks and full-page updates, which were rapidly
enhanced with graphics support and form-based data entry. Gradually, with the introduction of DHTML
[2] as well as numerous Rich Internet Application technologies, such as Adobe Flash and Microsoft Sil-
verlight, it became feasible to create increasingly interactive web pages with built-in support for advanced
graphics and animation, culminating in “Web 2.0” technologies, commonly associated with systems such
as Ajax [1], Ruby on Rails [15], and Google Web Toolkit (GWT) [11]. Today, we are on our way towards
more complex applications, that increasingly builds on the networking capabilities and pervasiveness of
the web.

The ability to download systems on-demand basis produces many benefits over the conventional model
of application deployment, where installation plays a major role. On-demand applications need not be
installed by the users, and therefore they can be more flexibly upgraded than their desktop counterparts.
Furthermore, since the same service is commonly made available to numerous users, configuration and

555 Tommi Mikkonen and Arto Salminen / Procedia Computer Science 10 (2012) 553 – 560

version management complications are considerably easier to solve than in the traditional model, where
clients at least potentially use different versions. Finally, the service provider has access to all data as well
as the behavior of the users, making it simpler to design exhaustive test systems that focus on the most
important aspects of the system.

A particular characteristic of today’s on-demand applications is that they are commonly loaded on-the-
fly from the Web, and the browser acts as their runtime environment. Consequently, applications build on
application programming interfaces (APIs) based on web technologies, including for example HTTP,
REST, SOAP and JSON, which commonly lend themselves for other use as well. This characteristic ena-
bles the development of increasingly complex 3rd party applications that reuse the already existing content
and services. Furthermore, these applications – so called mashups that “mash up” content from various
sites into an integrated experience – can be build by developers that are not directly associated with the
original developers of the reused services.

As already pointed out, a mashup is a web site or application that combines content from more than
one source (from multiple web sites) into an integrated experience. In other words, mashups are content
aggregates that leverage the power of the Web to support worldwide sharing of content that conventional-
ly would not have been easily accessible or reusable in different contexts or from different locations.

While present mashup applications often build on maps or photos with overlays, this is not a technical
restriction. In contrast, the content can be anything as long as it can be meaningfully combined with other
information available on the Web, e.g., price comparison information combined with product specifica-
tions, latest product news and user reviews or blogs. In addition to so called consumer mashups, mashups
are used in enterprises as well to combine private information of the company with publicly available ser-
vices. The key aspect is that the content must be available in a format that can be reused easily in other
contexts. Furthermore, interfaces that remain unchanged over time are needed in order to develop long-
lasting, robust mashup services that do not need constant upgrades as services they build on are modified.

Despite the recent emergence of tools and the general interest and hype around web technologies,
mashups are not actually anything new. In software development, it has been a common practice or desire
to build more advanced software systems out of prefabricated, reusable components developed by other
software developers. The desire for reusable software components was first expressed by McIlroy and
other participants of the NATO Software Engineering conference back in 1968 [5], and techniques for
software reuse have been investigated for decades. However, mashup development differs from conven-
tional software reuse in several important ways, originally listed in [13, 14]:

In mashup development there is a lot more focus on reusing the content rather than the implementation
of a web site. While standardized formats for various content formats, such as images and videos for
example, exist, it is often surprisingly difficult to reuse the implementation of a web site in other con-
texts. For example, the current web technologies do not make it easy to specify which parts of the web
site are intended to be reusable in other contexts and which are not. In the same fashion, many
mashups reuse the visual representation of sites only (e.g., a map or the layout of a web site), while
others reuse the content (substance) separately from its visual representation.
Mashups are far more dynamic than more conventionally used compiled, binary software components.
Since mashups are all about combining content from multiple web sites in a highly dynamic fashion,
they cannot be built easily with static programming languages that require advance compilation and
static type checking.
Because of the increased focus on content rather than on implementation techniques, the mashup de-
veloper base is different from conventional software development projects. A mashup developer does
not necessarily have any formal training or background in software development. Rather, it is far more
common for them to have some kind of a media background.
The distribution and sharing power of the Web makes it exceptionally easy to reuse content in unfore-
seen, unexpected ways. Basically, anything that is made available on the Web is instantly accessible to

556 Tommi Mikkonen and Arto Salminen / Procedia Computer Science 10 (2012) 553 – 560

anybody anywhere in the world with a web browser. This increases the potential content user and re-
user base by several orders of magnitude compared with conventional software components that are
typically distributed in a far more controlled and limited fashion. Often, the developer of a web site
may not be aware at all that content from his or her site is being used in other contexts as well. The
same also applies to implementations, but due to the above complications their reuse becomes more
complex in practice.
Despite the above issues, mashups demonstrate the capability of the Web to act as a distribution chan-

nel for arbitrary applications, making it the first truly pervasive and uniform communication media for
distributed applications. Consequently it can be used as a basis for a component architecture on top of
which distributed applications can be build in the global scale.

3. Towards software components as on-demand-service

In recent years, significant progress has been made in turning web engineering into a real engineering
field; for a comprehensive overview, the reader is referred to [3]. However, we argue that the development
practices for web applications are still far from the maturity levels of traditional software development,
and there is still an impedance mismatch between web-based software development and software engi-
neering [7].

We believe that the evolution of web technologies will eventually lead us to mashware – mashup soft-
ware that leverages source code and software components that are downloaded dynamically from all over
the world. Such software can dramatically improve the productivity of software development, allowing
massive reuse of software components across the planet. However, without new software architectures,
methodologies and systematic approaches towards the development of such software, the gap between
web development and software engineering will only grow wider. To avoid this, research is needed in
several areas related to web development, including security, modularity, and legal aspects, as well as
improved software engineering methodologies to foster the development of mashware systems in system-
atic fashion.

In the absence of security restrictions that prevent the downloading of executable code to the browser
from different domains, the content in mashups could be executable code as well. In fact, we believe that
mashware – or on-demand software components – is the next logical step in the evolution of the Web as a
software platform. By this, we refer to a generalized form of mashup-based software development, in
which applications can be composed by dynamically combining code and other content originating from
web sites from all over the world. For instance, the user interface widgets of an application might be
downloaded from one site, storage features from another site, the localization capabilities from a third site,
and so on, based on the availability of best components for each purpose. We refer to such a model for
application development as mashware – software as a worldwide mashup. The general idea, originally
presented in [7, 13, 14] at the level of concept, is depicted in Fig. 1. In the figure, we assume that the de-
veloper is building a web application to visualize stock market information. The application consists of a
main application – downloaded from the developer's own web server – that will dynamically download
the other necessary components from other web sites. These components include: (1) widget library for
presenting the user interface of the application, (2) stock graph visualization library for creating graphs,
(3) stock quote / market data interface available from a third site, and (4) localization (L10N) components
for customizing the data and the language for a specific country. All components are downloaded from
different web servers and used dynamically without compilation, static linking, or explicit installation.

557 Tommi Mikkonen and Arto Salminen / Procedia Computer Science 10 (2012) 553 – 560

Fig. 1. The mashware concept: software components as on-demand services that can be downloaded on the fly.

For obvious reasons, one cannot expect that the downloaded components could be arbitrary. Instead, in
order to be use the different components for their tasks, interfaces in these components must be designed
in a disciplined fashion, preferably following the software engineering principles that would allow their
evolution over time. However, this task can be simplified, since unlike conventional binary applications,
web applications are generally deployed in textual form, using representations such as HTML, XML, CSS
and JavaScript source code, causing a shift towards dynamic languages [10]. This results in increased
flexibility in application creation, as well as tolerance towards certain kinds of problems.

Finally, mashware based applications are particularly promising in the mobile domain, where it is
common that applications can considerably benefit from the possibility to use hardware acceleration,
binding to binary resources, and other forms of tighter integration with the device itself. With the pro-
posed approach, it is possible to create, deploy, and distribute components that are capable of interacting
with the device in an enhanced fashion. For applications, this results in improved capabilities and superior
user experience, enabled by the new bindings.

4. Proof-of-concept implementation

Our mashware implementation follows a general mashup reference architecture described in an earlier
paper [6]. The reference architecture (see Fig. 2a) determines the following main components for a
mashup application: mashup manager, content providers, data model including content extractors and
formatters, mashup creation and renderers. We have applied the reference architecture to a mashware im-
plementation (see Fig. 2b for application structure) that is based on a RESTful mashware metadata reposi-
tory and a client application that includes the capability to combine its necessary software components on
the fly. Furthermore, on the client side, we have a mashware manager that includes functionality for
searching, downloading and enabling components originating from the repository. The repository includes
components for extracting, formatting and rendering the mashup content. In addition, the client-side ap-
plication includes a mashup creation module that determines the business logic of the mashup and com-
bines the components acquired with the mashware manager in a meaningful way. All these components
are summarized in technical terms in the following.

Mashware repository. The mashware repository, which can be generalized into a set of repositories,
has a RESTful interface [4] for requesting metadata of mashware components. The interface is self-
descriptive, and components can be requested based on their capabilities. For instance, a list of all possible
renderers is located in an URI http://example.com/renderers, and rendering components capable of pre-
senting content with ‘image/jpeg’ MIME type can be searched with an HTTP GET request
http://example.com/renderers[contentTypes=’imagejpeg’]. Similar structure applies for content extractors
and formatters, too. The component metadata is stored as JavaScript objects described in JSON
(JavaScript Object Notation).

558 Tommi Mikkonen and Arto Salminen / Procedia Computer Science 10 (2012) 553 – 560

Fig. 2. (a) General reference architecture for mashups [6]; (b) Example mashware application structure; (c) A screenshot of the
example application running on a desktop environment. Implementation of the mashware application follows the general reference
architecture.

Mashware manager. The mashware manager includes functionality that is needed for searching,
downloading, and selecting components from the repository. In our implementation, we have used only a
single manager, but in accordance to the overall scheme, also this component could be replaced by an-
other, loaded dynamically as needed as well. Caching of the components can be implemented in mash-
ware manager, and it can be used to extend components with some methods if it is necessary. In our im-
plementation, when the mashup creation module requests a component, the mashware manager downloads
the matching code, evaluates the code, creates a new instance of the JavaScript component, initializes and
returns it. Furthermore, it is possible to extend the system towards more autonomous selection of compo-
nents.

Content extractors. Content extractors provide means to download content from different sources over
the web, and they can be located in the repository based on their description. These can include data in the
web, local data in the device as well as context dependent data, such as GPS location. Collaborative
mashups can be composed, as extractors can be used to include content created simultaneously in another
mashup.

Content formatters. Content formatters are used to change and remove content items provided by con-
tent extractors before they are forwarded to renderers. In our implementation, a content formatter can be
used to expand a content provider to provide the data in a new format, but they can be used as a stand-
alone component as well. Furthermore, it is possible to use web services to alter the data. For instance, a
content formatter could use MashReduce programming model [12] in order to make heavy operations for
content data on the server-side.

Renderers. Renderers are used to present the content items for the user. They are not limited to present
the content in the fashion we are used to on the original services. For instance, a renderer could display the
Flickr images in a 3D scene of an art exhibition room, thus creating richer user experience and potentially
more attractive way to consume content.

Mashup creation. The mashup creation part is programmed by a mashup developer to combine the
mashware components in a meaningful way. As it uses the mashware manager, the technical implementa-
tion can be very straightforward, and it simply passes the data from a component to another according to
desired business logic. Introducing a simple graphical tool to determine the mashup creation algorithm is
included in our future plans.

559 Tommi Mikkonen and Arto Salminen / Procedia Computer Science 10 (2012) 553 – 560

To overcome numerous implementation details that affect the development inside the browser, includ-
ing in particular browsers’ security model which is eschewed for real applications [13], our design is
based on a mobile Qt-based JavaScript framework called Lively for Qt (http://lively.cs.tut.fi/qt) as a run-
time environment on the client-end of our mashware system, similarly to our earlier paper [9]. However,
the runtime does not form an essential restriction in the experiment, and consequently other environments
could be used as well.

5. Example application

The example mashware application can be seen in Fig. 2c. The idea of the application is to download
tagged images from VisualREST system (http://visualrest.cs.tut.fi), which can be used to access the con-
tent in user’s handheld devices and social networking services [8]. Tags are rendered on the user interface
and when a tag is selected the tagged image content is shown on another rendering component. Selecting a
tag triggers a search where the tag is used as a keyword to popular Twitter micro blogging service
(http://twitter.com). Found Twitter entries (“tweets”) are displayed along with the images in the same ren-
dering component. If there is more than one image or tweet to display, they are changed in regular inter-
vals.

The Fig. 2 presents the example application structure. The application utilizes two content extractors to
gain access to VisualREST and Twitter content. A content formatting component is used to alter the data
downloaded from VisualREST to be more straightforward to handle. Moreover, the application uses two
types of rendering components: one to present tags and another to display images and tweets. The rest of
the user interface (i.e. buttons and the drawing surface) is merged into the mashup creation module.

6. Discussion

At present, there are some widely used services that enable the development of web applications as
mashware, but they are commonly available only in a very specialized, degenerated form. The most obvi-
ous example in Google Maps API (http://code.google.com/apis/maps/index.html), which is available for
use in a programmatic fashion and that is partly loaded in the application that wishes to use the Maps API.
However, in many regards Google Maps also defines the capabilities of the whole application, and takes
over almost all activities that can be associated with the map component. Consequently we regard Google
Maps more of an application framework for map-based applications rather than true downloadable com-
ponent. Still, we believe that similar services, targeted for different domains, are a necessity for generaliz-
ing the approach of this paper into a true ecosystem that can be used for real applications.

An obvious concern about the development of downloadable applications is the lack of available and
applicable standards. Consequently, while building on well-established services, their APIs are almost
exclusively proprietary and vendor-specific. For example, assuming that one would wish to replace
Google Maps with another service in the above example, it would most likely be a time-consuming task to
redesign the application around OpenStreetMaps API (http://wiki.openstreetmap.org/wiki/API), for exam-
ple. To create a true component market, standards that define the interfaces to the different services should
be created and deployed en masse online. Examples of such standards can be found in the field of agent
systems (http://www.fipa.org/repository/standardspecs.html), where interoperability of agents (or compo-
nents) produced by different parties is a key issue.

Finally, while security issues form a major concern in the design of mashup applications, similar con-
siderations are needed in the development of mashware based system. In this paper, we were using a
proof-of-concept implementation based on proprietary technology, which liberated us from such concerns,
but when run inside the standard browser security concerns similar to those presented in [7, 13, 14] can be
raised. We believe that the new, emerging standards such as World Wide Web Consortium’s Security

560 Tommi Mikkonen and Arto Salminen / Procedia Computer Science 10 (2012) 553 – 560

Activity Proposal (http://www.w3.org/2011/07/security-activity.html) will eventually solve these issues.
However, at the same time we expect that even eventually when finalized, the deployment of standard-
compliant implementations requires time.

7. Conclusions

The World Wide Web is the most powerful medium for sharing information in the history of human-
kind. For the first time, we have a truly uniform distribution system that can be used for the development
of applications in the global scale. Consequently, we believe that applications that exist now have only
scratched the surface of the true potential of applications that are created in accordance with the principles
of distributed computing using a component model based on the characteristics of the Web.

In this paper, we have addressed an architecture where the Web is used as a basis for a distributed
component architecture. A proof-of-concept system created for a mobile device was also introduced, to-
gether with a sample application that demonstrates the power and flexibility of the approach. In the long
run, we plan to experiment with the approach in a more extensive fashion, with the particular research
interest lying in the creation of an ecosystem where reusable components are available online en masse.

References

1. D. Crane, E. Pascarello, D. James, Ajax in Action, Manning Publications (2005).

2. D. Goodman, Dynamic HTML: The Definitive Reference, O'Reilly Media (2006).

3. G. Kappel, B. Pröll, S. Reich and W. Retschitzegger (eds.), Web Engineering: The Discipline of Systematic Development

of Web Applications, John Wiley and Sons (2006).

4. Masse, M. REST API Design Rulebook. O’Reilly Media (2012).

5. M.D. McIlroy, Mass produced software components, In P. Naur, B. Randell (eds.), 1968 NATO Working Conference on

Software Engineering, Garmisch, Germany, October 7-11, pp. 88-98 (1968).

6. T. Mikkonen and A. Salminen, Towards a reference architecture for mashups, In proc. of the int. conference on On the

move to meaningful internet systems, Springer-Verlag, Berlin, Heidelberg, pp. 647-656 (2011).

7. T. Mikkonen, and A. Taivalsaari, The mashware challenge: Bridging the gap between web development and software

engineering, 18th ACM SIGSOFT Int. Symposium on the Foundations of Software Engineering FSE-18, Santa Fe, NM,

USA, pp. 245-249 (2010).

8. N. Mäkitalo, H. Peltola, J. Salo and T. Turto, VisualREST: A Content Management System for Cloud Computing

Environment, In Proc. of the SEAA'2011 - 37th EUROMICRO Conference on Software Engineering and Advanced

Applications, pp. 183-188 (2011).

9. F. Nyrhinen, A. Salminen, T. Mikkonen and A. Taivalsaari, Lively Mashups for Mobile Devices. In Proc. of the First Int.

Conference on Mobile Computing, Applications and Services, San Diego, CA, USA, October 26-29, 2009.

10. L.D. Paulson, Developers Shift to Dynamic Programming Languages, IEEE Computer, February, pp. 12-15 (2007).

11. C. Prabhakar, Google Web Toolkit: GWT Java Ajax Programming, Packt Publishing (2007).

12. J. Salo, T. Aaltonen and T. Mikkonen, MashReduce – Server-Side Mashups for Mobile Devices, In Proc. of the 6th

International Conference on Grid and Pervasive Computing, Oulu, Finland, May 11-13 (2011).

13. A. Taivalsaari, Mashware: The Future of Web Applications, Sun Microsystems Laboratories Technical Report TR-2009-

181, February (2009).

14. A. Taivalsaari and T. Mikkonen, Mashups and Modularity: Towards Secure and Reusable Web Applications, In Proc. of

the First Workshop on Social Software Engineering and Applications, L'Aquila, Italy, September 16, (2008).

15. B. Tate, Ruby on Rails: Up and Running. O'Reilly Media, (2006).

